Oracle Aims at Intel and IBM POWER

In late June Oracle announced the SPARC S7 processor, a new 20nm, 4.27 GHz, 8-core/64-thread SPARC processor targeted for scale-out Cloud workloads that usually go to Intel x86 servers. These are among the same workloads IBM is aiming for with POWER8, POWER9, and eventually POWER10, as reported by DancingDinosaur just a couple of weeks ago.

oracle roadmap trajectory

Oracle 5-year SPARC trajectory (does not include newly announced S series).

According to Oracle, the latest additions to the SPARC platform are built on the new 4.27 GHz, 8-core/64-thread SPARC S7 microprocessor with what Oracle calls Software-in-Silicon features such as Silicon Secured Memory and Data Analytics Accelerators, which enable organizations to run applications of all sizes on the SPARC platform at commodity price points. All existing commercial and custom applications will also run on the new SPARC enterprise cloud services and solutions unchanged while experiencing improvements in security, efficiency, and simplicity.

By comparison, the IBM POWER platform includes with the POWER8, which is delivered as a 12-core, 22nm processor. The POWER9, expected in 2017, will be delivered as 14nm processor with 24 cores and CAPI and NVlink accelerators, which ensure delivery of more performance with greater energy efficiency.  By 2018, the IBM roadmap shows POWER8/9 as a 10nm, maybe even a 7nm, processor, based on the existing micro-architecture. And an even beefier POWER10 is expected to arrive around 2020.

At the heart of the Oracle’s new scale-out, commodity-priced server, the S7. According to Oracle, the SPARC S7 delivers balanced compute performance with 8 cores per processor, integrated on-chip DDR4 memory interfaces, a PCIe controller, and coherency links. The cores in the SPARC S7 are optimized for running key enterprise software, including Java applications and database. The SPARC S7–based servers use very high levels of integration that increase bandwidth, reduce latencies, simplify board design, reduce the number of components, and increase reliability, according to Oracle. All this promises an increase in system efficiency with a corresponding improvement in the economics of deploying a scale-out infrastructure when compared to other vendor solutions.

Oracle’s SPARC S7 processor, based on Oracle enterprise class M7 servers, is optimized for horizontally scalable systems with all the key functionality included in the microprocessor chip. Its Software-in-Silicon capabilities, introduced with the SPARC M7 processor, are also available in the SPARC S7 processor to enable improved data protection, cryptographic acceleration, and analytics performance. These features include Security-in-Silicon, which provides Silicon Secured Memory and cryptographic acceleration, and Data Analytics Accelerator (DAX) units, which provide In-memory query acceleration and in-line decompression

SPARC S7 processor–based servers include single- and dual-processor systems that are complementary to the existing mid-range and high-end systems based on Oracle’s SPARC M7 processor. SPARC S7 processor–based servers include two rack-mountable models. The SPARC S7-2 server uses a compact 1U chassis, and the SPARC S7-2L server is implemented in a larger, more expandable 2U chassis. Uniformity of management interfaces and the adoption of standards also should help reduce administrative costs, while the chassis design provides density, efficiency, and economy as increasingly demanded by modern data centers. Published reports put the cost of the new Oracle systems at just above $11,000 with a single processor, 64GB of memory and two 600GB disk drives, and up to about $50,000 with two processors and a terabyte of memory.

DancingDinosaur doesn’t really have enough data to compare the new Oracle system with the new POWER8 and upcoming POWER9 systems. Neither Oracle nor IBM have provided sufficient details. Oracle doesn’t even offer a roadmap at this point, which might tell you something.

What we do know about the POWER machines is this: POWER9 promises a wealth of improvements in speeds and feeds. Although intended to serve the traditional Power Server market, it also is expanding its analytics capabilities and is being optimized for new deployment models like hyperscale, cloud, and technical computing through scale-out deployment. Available for either clustered or multiple formats, it will feature a shorter pipeline, improved branch execution, and low latency on the die cache as well as PCI gen 4.

According to IBM, you can expect a 3x bandwidth improvement with POWER9 over POWER8 and a 33% speed increase. POWER9 also will continue to speed hardware acceleration and support next gen NVlink, improved coherency, enhance CAPI, and introduce a 25 GPS high speed link. Although the 2-socket chip will remain, IBM suggests larger socket counts are coming. It will need that to compete with Intel.

At least IBM showed its POWER roadmap. There is no comparable information from Oracle. At best, DancingDinosaur was able to dig up the following sketchy details for 2017-2019: Next Gen Core, 2017 Software-in-Silicon V1, Scale Out fully integrated Software-in-Silicon V1 or 2; 2018- 2019 Core Enhancements, Increased Cache, Increased Bandwidth, Software-in-Silicon V3.

Both Oracle and IBM have made it clear neither really wants to compete in the low cost, scale out server market. However, as both companies’ large clients turn to scale out, hyperscale Intel-based systems they have no choice but to follow the money. With the OpenPOWER Foundation growing and driving innovation, mainly in the form of accelerators, IBM POWER may have an advantage driving a very competitive price/performance story against Intel. With the exception of Fujitsu as an ally of sorts, Oracle has no comparable ecosystem as far as DancingDinosaur can tell.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.


Tags: , , , , , , , , , , , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: