IBM Introduces First Universal Commercial Quantum Computers

A few years ago DancingDinosaur first encountered the possibility of quantum computing. It was presented as a real but distant possibility. This is not something I need to consider I thought at the time.  By the time it is available commercially I will be long retired and probably six feet under. Well, I was wrong.

This week IBM unveiled its IBM Q quantum systems. IBM Q will be leading Watson and blockchain to deliver the most advanced set of services on the IBM Cloud platform. There are organizations using it now, and DancingDinosaur continues to be living and working still.

IBM Quantum Computing scientists Hanhee Paik (left) and Sarah Sheldon (right) examine the hardware inside an open dilution fridge at the IBM Q Lab

As IBM explains: While technologies that currently run on classical (or conventional) computers, such as Watson, can help find patterns and insights buried in vast amounts of existing data, quantum computers will deliver solutions to multi-faceted problems where patterns cannot be seen because the data doesn’t exist and the possibilities that you need to explore are too enormous to ever be processed by conventional computers.

Just don’t retire your z or Power system in favor on an IBM Q yet. As IBM explained at a recent briefing on the quantum computing the IBM Q universal quantum computers will be able to do any type of problem that conventional computers do today. However, many of today’s workloads, like on-line transaction processing, data storage, and web serving will continue to run more efficiently on conventional systems. The most powerful quantum systems of the next decade will be a hybrid of quantum computers with conventional computers to control logic and operations on large amounts of data.

The most immediate use cases will involve molecular dynamics, drug design, and materials. The new quantum machine, for example, will allow the healthcare industry to design more effective drugs faster and at less cost and the chemical industry to develop new and improved materials.

Another familiar use case revolves around optimization in finance and manufacturing. The problem here comes down to computers struggling with optimization involving an exponential number of possibilities. Quantum systems, noted IBM, hold the promise of more accurately finding the most profitable investment portfolio in the financial industry, the most efficient use of resources in manufacturing, and optimal routes for logistics in the transportation and retail industries.

To refresh the basics of quantum computing.  The challenges invariably entail exponential scale. You start with 2 basic ideas; 1) the uncertainty principle, which states that attempting to observe a state in general disturbs it while obtaining only partial information about the state. Or 2) where two systems can exist in an entangled state, causing them to behave in ways that cannot be explained by supposing that each has some state of its own. No more zero or 1 only.

The basic unit of quantum computing is the qubit. Today IBM is making available a 5 qubit system, which is pretty small in the overall scheme of things. Large enough, however, to experiment and test some hypotheses; things start getting interesting at 20 qubits. An inflexion point, IBM researchers noted, occurs around 50 qubits. At 50-100 qubits people can begin to do some serious work.

This past week IBM announced three quantum computing advances: the release of a new API for the IBM Quantum Experience that enables developers and programmers to begin building interfaces between IBM’s existing 5 qubit cloud-based quantum computer and conventional computers, without needing a deep background in quantum physics. You can try the 5 qubit quantum system via IBM’s Quantum Experience on Bluemix here.

IBM also released an upgraded simulator on the IBM Quantum Experience that can model circuits with up to 20 qubits. In the first half of 2017, IBM plans to release a full SDK on the IBM Quantum Experience for users to build simple quantum applications and software programs. Only the publically available 5 qubit quantum system with a web-based graphical user interface now; soon to be upgraded to more qubits.

 IBM Research Frontiers Institute allows participants to explore applications for quantum computing in a consortium dedicated to making IBM’s most ambitious research available to its members.

Finally, the IBM Q Early Access Systems allows the purchase of access to a dedicated quantum system hosted and managed by IBM. Initial system is 15+ qubits, with a fast roadmap promised to 50+ qubits.

“IBM has invested over decades to growing the field of quantum computing and we are committed to expanding access to quantum systems and their powerful capabilities for the science and business communities,” said Arvind Krishna, senior vice president of Hybrid Cloud and director for IBM Research. “We believe that quantum computing promises to be the next major technology that has the potential to drive a new era of innovation across industries.”

Are you ready for quantum computing? Try it today on IBM’s Quantum Experience through Bluemix. Let me know how it works for you.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.

Tags: , , , , , , , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: