Posts Tagged ‘analytics’

FlashSystem 9100 Includes NVMe and Spectrum Software

July 20, 2018

The new IBM FlashSystem 9100 comes with all the bells and whistles included, especially NVMe and Spectrum Software.  For software, IBM includes its full suite of software-defined capabilities for your data both on-premises and in the cloud and across public and private clouds. It also aims to modernize your infrastructure with new capabilities for private and hybrid clouds as well as optimize operations.

FlashSystem 9100 with new capabilities built-in end-to-end

It also includes AI-assisted, next-generation technology for multi-cloud environments. This should allow you to optimize business critical workloads in an effort to optimize your technology infrastructure and prepare for the era of multi-cloud digitized business now emerging.

The IT infrastructure market is changing so quickly and so radically that technology that might have been still under consideration can no longer make it to the short list. DancingDinosuar, for example, won’t even attempt to create an ROI analysis of hard disk for primary storage. Other than straight-out falsification the numbers couldn’t work.

The driver behind this, besides the advances in technology price/performance and what seems like return to Moore’s Law levels of gains, lies the success of the big hyperscalers, who are able to sustain amazing price and performance levels. DancingDinosaur readers are no hyperscalers but they are capitalizing on hyperscaler gains in the cloud and they can emulate hyperscaler strategies in their data centers wherever possible.

IBM puts it a little more conventionally: As more and more organizations move on to a multi-cloud strategy they are having more data-driven needs such as artificial intelligence (AI), machine learning (ML), and containers, it writes. All of these new needs require a storage solution that is powerful enough to address all the needs while being built on proven technology and support both the existing and evolving data centers. IBM’s response to these issues is the expansion of its FlashSystem to include the new 9100 NVMe end-to-end solution while piling on the software.

Aside from being an all NVMe storage solution, IBM is leveraging several IBM technologies such as IBM Spectrum Virtualize and IBM FlashCore as well as software from IBM’s Spectrum family. This combination of software and technology helps the 9100 store up to 2PB of data in a 2U space (32PB in a larger rack). FlashCore also enables consistent microsecond latency, with IBM quoting performance of 2.5 million IOPS, 34GB/s, and 100μs latency for a single 2U array. For storage, the FlashSystem 9100 uses FlashCore modules with an NVMe interface. These 2.5” drives come in 4.8TB, 9.6TB, and 19.2TB capacities with up to 5:1 compression. The drives leverage 64-Layer 3D TLC NAND and can be configured with as little as four drives per system.   You might not be a hyperscaler but this is the kind of stuff you need if you hope to emulate one.

To do this, IBM packs in the goodies. For starters it is NVMe-accelerated and Multi-Cloud Enabled.  And it goes beyond the usual flash array. This is an NVMe-accelerated Enterprise Flash Array – 100% NVMe end-to-end and includes NVMe IBM FlashCore modules and NVMe industry standard SSD. It also supports physical, virtual and Docker environments.

In addition, the system includes IBM Storage Insights for AI-empowered predictive analytics, storage resource management, and support delivered over the cloud. Also, it offers Spectrum Storage Software for array management, data reuse, modern data protection, disaster recovery, and containerization (how it handles Docker). Plus, IBM adds:

  • IBM Spectrum Virtualize
  • IBM Spectrum Copy Data Management
  • IBM Spectrum Protect Plus
  • IBM Spectrum Virtualize for Public Cloud
  • IBM Spectrum Connect
  • FlashSystem 9100 Multi-Cloud Solutions

And just in case you think you are getting ahead of yourself, IBM is adding what it calls blueprints. As IBM explains them: the blueprints take the form of three pre-validated, cloud-focused solution plans.

  1. Data Reuse, Protection and Efficiency solution leverages the capabilities of IBM Spectrum Protect Plus and IBM Spectrum Copy Data Management (CDM) to provide enhanced data protection features for virtual applications with powerful data copy management and reuse functionality both on premises and in the cloud.
  2. Business Continuity and Data Reuse solution leverages IBM Spectrum Virtualize for Public Cloud to extend data protection and disaster recovery capabilities into the IBM Cloud, as well as all the copy management and data reuse features of IBM Spectrum CDM.
  3. Private Cloud Flexibility and Data Protection solution enables simplified deployment of private clouds, including the technology needed to implement container environments, and all of the capabilities of IBM Spectrum CDM to manage copy sprawl and provide data protection for containerized applications.

The blueprints may be little more than an IBM shopping list that leaves you as confused as before and a little poorer. Still, the FlashSystem 9100, along with all of IBM’s storage solutions, comes with Storage Insights, the company’s enterprise, AI-based predictive analytics, storage resource management, and support platform delivered over the cloud. If you try any blueprint, let me know how it works, anonymously of course.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

 

IBM Introduces a Reference Architecture for On-Premise AI

June 22, 2018

This week IBM announced an AI infrastructure Reference Architecture for on-premises AI deployments. The architecture promises to address the challenges organizations face experimenting with AI PoCs, growing into multi-tenant production systems, and then expanding to enterprise scale while integrating into an organization’s existing IT infrastructure.

The reference architecture includes, according to IBM, a set of integrated software tools built on optimized, accelerated hardware for the purpose of enabling organizations to jump start. AI and Deep Learning projects, speed time to model accuracy, and provide enterprise-grade security, interoperability, and support.  IBM’s graphic above should give you the general picture.

Specifically, IBM’s AI reference architecture should support iterative, multi-stage, data-driven processes or workflows that entail specialized knowledge, skills, and, usually, a new compute and storage infrastructure. Still, these projects have many attributes that are familiar to traditional CIOs and IT departments.

The first of these is that the results are only as good as the data going into it, and model development is dependent upon having a lot of data and the data being in the format expected by the deep learning framework. Surprised? You have been hearing this for decades as GIGO (Garbage In Garbage Out).  The AI process also is iterative; repeatedly looping through data sets and tunings to develop more accurate models and then comparing new data in the model to the original business or technical requirements to refine the approach.  In this sense, AI reference model is no different than IT 101, an intro course for wannabe IT folks.

But AI doesn’t stay simplistic for long. As the reference architecture puts it, AI is a sophisticated, complex process that requires specialized software and infrastructure. That’s where IBM’s PowerAI Platform comes in. Most organizations start with small pilot projects bound to a few systems and data sets but grow from there.

As projects grow beyond the first test systems, however, it is time to bulk up an appropriate storage and networking infrastructure. This will allow it to sustain growth and eventually support a larger organization.

The trickiest part of AI and the part that takes inspired genius to conceive, test, and train is the model. The accuracy and quality of a trained AI model are directly affected by the quality and quantity of data used for training. The data scientist needs to understand the problem they are trying to solve and then find the data needed to build a model that solves the problem.

Data for AI is separated into a few broad sets; the data used to train and test the models and data that is analyzed by the models and the archived data that may be reused. This data can come from many different sources such as traditional organizational data from ERP systems, databases, data lakes, sensors, collaborators and partners, public data, mobile apps, social media, and legacy data. It may be structured or unstructured in many formats such as file, block, object, Hadoop Distributed File Systems (HDFS), or something else.

Many AI projects begin as a big data problem. Regardless of how it starts, a large volume of data is needed, and it inevitably needs preparation, transformation, and manipulation. But it doesn’t stop there.

AI models require the training data to be in a specific format; each model has its own and usually different format. Invariably the initial data is nowhere near those formats. Preparing the data is often one of the largest organizational challenges, not only in complexity but also in the amount of time it takes to transform the data into a format that can be analyzed. Many data scientists, notes IBM, claim that over 80% of their time is spent in this phase and only 20% on the actual process of data science. Data transformation and preparation is typically a highly manual, serial set of steps: identifying and connecting to data sources, extracting to a staging server, tagging the data, using tools and scripts to manipulate the data. Hadoop is often a significant source of this raw data, and Spark typically provides the analytics and transformation engines used along with advanced AI data matching and traditional SQL scripts.

There are two other considerations in this phase: 1) data storage and access and the speed of execution. For this—don’t be shocked—IBM recommends Spectrum Scale to provide multi-protocol support with a native HDFS connector, which can centralize and analyze data in place rather than wasting time copying and moving data. But you may have your preferred platform.

IBM’s reference architecture provides a place to start. A skilled IT group will eventually tweak IBM’s reference architecture, making it their own.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Expands and Enhances its Cloud Offerings

June 15, 2018

IBM announced 18 new availability zones in North America, Europe, and Asia Pacific to bolster its IBM Cloud business and try to keep pace with AWS, the public cloud leader, and Microsoft. The new availability zones are located in Europe (Germany and UK), Asia-Pacific (Tokyo and Sydney), and North America (Washington, DC and Dallas).

IBM cloud availability zone, Dallas

In addition, organizations will be able to deploy multi-zone Kubernetes clusters across the availability zones via the IBM Cloud Kubernetes Service. This will simplify how they deploy and manage containerized applications and add further consistency to their cloud experience. Furthermore, deploying multi-zone clusters will have minimal impact on performance, about 2 ms latency between availability zones.

An availability zone, according to IBM, is an isolated instance of a cloud inside a data center region. Each zone brings independent power, cooling, and networking to strengthen fault tolerance. While IBM Cloud already operates in nearly 60 locations, the new zones add even more capacity and capability in these key centers. This global cloud footprint becomes especially critical as clients look to gain greater control of their data in the face of tightening data regulations, such as the European Union’s new General Data Protection Regulation (GDPR). See DancingDinosaur June 1, IBM preps z world for GDPR.

In its Q1 earnings IBM reported cloud revenue of $17.7bn over the past year, up 22 percent over the previous year, but that includes two quarters of outstanding Z revenue that is unlikely to be sustained,  at least until the next Z comes out, which is at least a few quarters away.  AWS meanwhile reported quarterly revenues up 49 percent to $5.4 billion, while Microsoft recently reported 93 percent growth for Azure revenues.

That leaves IBM trying to catch up the old fashioned way by adding new cloud capabilities, enhancing existing cloud capabilities, and attracting more clients to its cloud capabilities however they may be delivered. For example, IBM announced it is the first cloud provider to let developers run managed Kubernetes containers directly on bare metal servers with direct access to GPUs to improve the performance of machine-learning applications, which is critical to any AI effort.  Along the same lines, IBM will extend its IBM Cloud Private and IBM Cloud Private for Data and middleware to Red Hat’s OpenShift Container Platform and Certified Containers. Red Hat already is a leading provider of enterprise Linux to Z shops.

IBM has also expanded its cloud offerings to support the widest range of platforms. Not just Z, LinuxONE, and Power9 for Watson, but also x86 and a variety of non-IBM architectures and platforms. Similarly, notes IBM, users have gotten accustomed to accessing corporate databases wherever they reside, but proximity to cloud data centers still remains important. Distance to data centers can have an impact on network performance, resulting in slow uploads or downloads.

Contrary to simplifying things, the propagation of more and different types of clouds and cloud strategies complicate an organization’s cloud approach. Already, today companies are managing complex, hybrid public-private cloud environments. At the same time, eighty percent of the world’s data is sitting on private servers. It just is not practical or even permissible in some cases to move all the data to the public cloud. Other organizations are run very traditional workloads that they’re looking to modernize over time as they acquire new cloud-native skills. The new IBM cloud centers can host data in multiple formats and databases including DB2, SQLBase, PostreSQL, or NoSQL, all exposed as cloud services, if desired.

The IBM cloud centers, the company continues, also promise common logging and services between the on-prem environment and IBM’s public cloud environment. In fact, IBM will make all its cloud services, including the Watson AI service, consistent across all its availability zones, and offer multi-cluster support, in effect enabling the ability to run workloads and do backups across availability zones.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Preps Z World for GDPR

June 1, 2018

Remember Y2K?  That was when calendars rolled over from the 1999 to 2000. It was hyped as an event that would screw up computers worldwide. Sorry, planes did not fall out of the sky overnight (or at all), elevators didn’t plummet to the basement, and hospitals and banks did not cease functioning. DancingDinosaur did OK writing white papers on preparing for Y2K. Maybe nothing bad happened because companies read papers like those and worked on changing their date fields.

Starting May 25, 2018 GDPR became the new Y2K. GRDP, the EC’s (or EU) General Data Protection Regulation (GDPR), an overhaul of existing EC data protection rules, promises to strengthen and unify those laws for EC citizens and organizations anywhere collecting and exchanging data involving its citizens. That is probably most of the readers of DancingDinosaur. GDRP went into effect at the end of May and generated a firestorm of trade business press but nothing near what Y2K did.  The primary GDPR objectives are to give citizens control over their personal data and simplify the regulatory environment for international business.

According to Bob Yelland, author of How it Works: GDPR, a Little Bee Book above, 50% of global companies  say they will struggle to meet the rules set out by Europe unless they make significant changes to how they operate, and this may lead many companies to appoint a Data Protection Officer, which the rules recommend. Doesn’t it feel a little like Y2K again?

The Economist in April wrote: “After years of deliberation on how best to protect personal data, the EC is imposing a set of tough rules. These are designed to improve how data are stored and used by giving more control to individuals over their information and by obliging companies to handle what data they have more carefully. “

As you would expect, IBM created a GDPR framework with five phases to help organizations achieve readiness: Assess, Design, Transform, Operate, and Conform. The goal of the framework is to help organizations manage security and privacy effectively in order to reduce risks and therefore avoid incidents.

DancingDinosaur is not an expert on GDPR in any sense, but from reading GDPR documents, the Z with its pervasive encryption and automated secure key management should eliminate many concerns. The rest probably can be handled by following good Z data center policy and practices.

There is only one area of GDPR, however, that may be foreign to North American organizations—the parts about respecting and protecting the private data of individuals.

As The Economist wrote: GDPR obliges organizations to create an inventory of the personal data they hold. With digital storage becoming ever cheaper, companies often keep hundreds of databases, many of which are long forgotten. To comply with the new regulation, firms have to think harder about data hygiene. This is something North American companies probably have not thought enough about.

IBM recommends you start by assessing your current data privacy situation under all of the GDPR provisions. In particular, discover where protected information is located in your enterprise. Under GDPR, individuals have rights to consent to access, correct, delete, and transfer personal data. This will be new to most North American data centers, even the best managed Z data centers.

Then, IBM advises, assess the current state of your security practices, identify gaps, and design security controls to plug those gaps. In the process find and prioritize security vulnerabilities, as well as any personal data assets and affected systems. Again, you will want to design appropriate controls. If this starts sounding a little too complicated just turn it over to IBM or any of the handful of other vendors who are racing GDPR readiness services into the market. IBM offers Data Privacy Consulting Services along with a GDPR readiness assessment.

Of course, you can just outsource it to IBM or others. IBM also offers its GDPR framework with five phases. The goal of the framework is to help organizations subject to GDPR manage security and privacy with the goal of reducing risks and avoiding problems.

GDPR is not going to be fun, especially the obligation to comply with each individual’s rights regarding their data. DancingDinosaur suspects it could even get downright ugly.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Is Your Enterprise Ready for AI?

May 11, 2018

According to IBM’s gospel of AI “we are in the midst of a global transformation and it is touching every aspect of our world, our lives, and our businesses.”  IBM has been preaching its gospel of AI of the past year or longer, but most of its clients haven’t jumped fully aboard. “For most of our clients, AI will be a journey. This is demonstrated by the fact that most organizations are still in the early phases of AI adoption.”

AC922 with NIVIDIA Tesla V100 and Enhanced NVLink GPUs

The company’s latest announcements earlier this week focus POWER9 squarely on AI. Said Tim Burke, Engineering Vice President, Cloud and Operating System Infrastructure, at Red Hat. “POWER9-based servers, running Red Hat’s leading open technologies offer a more stable and performance optimized foundation for machine learning and AI frameworks, which is required for production deployments… including PowerAI, IBM’s software platform for deep learning with IBM Power Systems that includes popular frameworks like Tensorflow and Caffe, as the first commercially supported AI software offering for [the Red Hat] platform.”

IBM insists this is not just about POWER9 and they may have a point; GPUs and other assist processors are taking on more importance as companies try to emulate the hyperscalers in their efforts to drive server efficiency while boosting power in the wake of declines in Moore’s Law. ”GPUs are at the foundation of major advances in AI and deep learning around the world,” said Paresh Kharya, group product marketing manager of Accelerated Computing at NVIDIA. [Through] “the tight integration of IBM POWER9 processors and NVIDIA V100 GPUs made possible by NVIDIA NVLink, enterprises can experience incredible increases in performance for compute- intensive workloads.”

To create an AI-optimized infrastructure, IBM announced the latest additions to its POWER9 lineup, the IBM Power Systems LC922 and LC921. Characterized by IBM as balanced servers offering both compute capabilities and up to 120 terabytes of data storage and NVMe for rapid access to vast amounts of data. IBM included HDD in the announcement but any serious AI workload will choke without ample SSD.

Specifically, these new servers bring an updated version of the AC922 server, which now features recently announced 32GB NVIDIA V100 GPUs and larger system memory, which enables bigger deep learning models to improve the accuracy of AI workloads.

IBM has characterized the new models as data-intensive machines and AI-intensive systems, LC922 and LC921 Servers with POWER9 processors. The AC922, arrived last fall. It was designed for the what IBM calls the post-CPU era. The AC922 was the first to embed PCI-Express 4.0, next-generation NVIDIA NVLink, and OpenCAPI—3 interface accelerators—which together can accelerate data movement 9.5x faster than PCIe 3.0 based x86 systems. The AC922 was designed to drive demonstrable performance improvements across popular AI frameworks such as TensorFlow and Caffe.

In the post CPU era, where Moore’s Law no longer rules, you need to pay as much attention to the GPU and other assist processors as the CPU itself, maybe even more so. For example, the coherence and high-speed of the NVLink enables hash tables—critical for fast analytics—on GPUs. As IBM noted at the introduction of the new machines this week: Hash tables are fundamental data structure for analytics over large datasets. For this you need large memory: small GPU memory limits hash table size and analytic performance. The CPU-GPU NVLink2 solves 2 key problems: large memory and high-speed enables storing the full hash table in CPU memory and transferring pieces to GPU for fast operations; coherence enables new inserts in CPU memory to get updated in GPU memory. Otherwise, modifications on data in CPU memory do not get updated in GPU memory.

IBM has started referring to the LC922 and LC921 as big data crushers. The LC921 brings 2 POWER9 sockets in a 1U form factor; for I/O it comes with both PCIe 4.0 and CAPI 2.0.; and offers up to 40 cores (160 threads) and 2TB RAM, which is ideal for environments requiring dense computing.

The LC922 is considerably bigger. It offers balanced compute capabilities delivered with the P9 processor and up to 120TB of storage capacity, again advanced I/O through PCIe 4.0/CAPI 2.0, and up to 44 cores (176 threads) and 2TB RAM. The list price, notes IBM is ~30% less.

If your organization is not thinking about AI your organization is probably in the minority, according to IDC.

  • 31 percent of organizations are in [AI] discovery/evaluation
  • 22 percent of organizations plan to implement AI in next 1-2 years
  • 22 percent of organizations are running AI trials
  • 4 percent of organizations have already deployed AI

Underpinning both servers is the IBM POWER9 CPU. The POWER9 enjoys a nearly 5.6x improved CPU to GPU bandwidth vs x86, which can improve deep learning training times by nearly 4x. Even today companies are struggling to cobble together the different pieces and make them work. IBM learned that lesson and now offers a unified AI infrastructure in PowerAI and Power9 that you can use today.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM Grows Quantum Ecosystem

April 27, 2018

It is good that you aren’t dying to deploy quantum computing soon because IBM readily admits that it is not ready for enterprise production now or in several weeks or maybe several months. IBM, however, continues to assemble the building blocks you will eventually need when you finally feel the urge to deploy a quantum application that can address a real problem that you need to resolve.

cryostat with prototype of quantum processor

IBM is surprisingly frank about the state of quantum today. There is nothing you can do at this point that you can’t simulate on a conventional or classical computer system. This situation is unlikely to change anytime soon either. For years to come, we can expect hybrid quantum and conventional compute environments that will somehow work together to solve very demanding problems, although most aren’t sure exactly what those problems will be when the time comes. Still at Think earlier this year IBM predicted quantum computing will be mainstream in 5 years.

Of course, IBM has some ideas of where the likely problems to solve will be found:

  • Chemistry—material design, oil and gas, drug discovery
  • Artificial Intelligence—classification, machine learning, linear algebra
  • Financial Services—portfolio optimization, scenario analysis, pricing

It has been some time since the computer systems industry had to build a radically different kind of compute discipline from scratch. Following the model of the current IT discipline IBM began by launching the IBM Q Network, a collaboration with leading Fortune 500 companies and research institutions with a shared mission. This will form the foundation of a quantum ecosystem.  The Q Network will be comprised of hubs, which are regional centers of quantum computing R&D and ecosystem; partners, who are pioneers of quantum computing in a specific industry or academic field; and most recently, startups, which are expected to rapidly advance early applications.

The most important of these to drive growth of quantum are the startups. To date, IBM reports eight startups and it is on the make for more. Early startups include QC Ware, Q-Ctrl, Cambridge Quantum Computing (UK), which is working on a compiler for quantum computing, 1Qbit based in Canada, Zapata Computing located at Harvard, Strangeworks, an Austin-based tool developer, QxBranch, which is trying to apply classical computing techniques to quantum, and Quantum Benchmark.

Startups get membership in the Q network and can run experiments and algorithms on IBM quantum computers via cloud-based access; provide deeper access to APIs and advanced quantum software tools, libraries, and applications; and have the opportunity to collaborate with IBM researchers and technical SMEs on potential applications, as well as with other IBM Q Network organizations. If it hasn’t become obvious yet, the payoff will come from developing applications that solve recognizable problems. Also check out QISKit, a software development kit for quantum applications available through GitHub.

The last problem to solve is the question around acquiring quantum talent. How many quantum scientists, engineers, or programmers do you have? Do you even know where to find them? The young people excited about computing today are primarily interested in technologies to build sexy apps using Node.js, Python, Jupyter, and such.

To find the people you need to build quantum computing systems you will need to scour the proverbial halls of MIT, Caltech, and other top schools that produce physicists and quantum scientists. A scan of salaries for these people reveals $135,000- $160,000, if they are available at all.

The best guidance from IBM on starting is to start small. The industry is still at the building block stage; not ready to throw specific application at real problems. In that case sign up for IBM’s Q Network and get some of your people engaged in the opportunities to get educated in quantum.

When DancingDinosaur first heard about quantum physics he was in a high school science class decades ago. It was intriguing but he never expected to even be alive to see quantum physics becoming real, but now it is. And he’s still here. Not quite ready to sign up for QISKit and take a small qubit machine for a spin in the cloud, but who knows…

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IT Security Enters the Cooperative Era

April 20, 2018

Ever hear of the cybersecurity tech accord?  It was  announced on Tuesday. Microsoft, Facebook, and 32 other companies signed aboard.  Absent from the signing were Apple, Alphabet and Amazon. Also missing was IBM. Actually, IBM was already at the RSA Conference making its own security announcement of an effort to help cybersecurity teams collaborate just like the attackers they’re defending against do via the dark web by sharing information among themselves.

IBM security control center

Tuesday’s Cybersecurity Tech Accord amounted to a promise to work together on cybersecurity issues. Specifically, the companies promise to work against state sponsored cyberattacks. The companies also agreed to collaborate on stronger defense systems and protect against the tampering of their products, according to published reports.

Giving importance to the accord is the financial impact of cybersecurity attacks on businesses and organizations, which is projected to reach $8 trillion by 2022. Other technology leaders, including Cisco, HP, Nokia, Oracle also joined the accord.

A few highly visible and costly attacks were enough to galvanize the IT leaders. In May, WannaCry ransomware targeted more than 300,000 computers in 150 countries, including 48 UK medical facilities. In a bid to help, Microsoft issued patches for old Windows systems, even though it no longer supports them, because so many firms run old software that was vulnerable to the attack, according to published reports. The White House attributed the attack to North Korea.

In June, NotPetya ransomware, which initially targeted computers in Ukraine before spreading, infected computers, locked down their hard drives, and demanded a $300 ransom to be paid in bitcoin. Even victims that paid weren’t able to recover their files, according to reports. The British government said Russia was behind the global cyberattack.

The Cybersecurity Tech Accord is modeled after a digital Geneva Convention, with a long-term goal of updating international law to protect people in times of peace from malicious cyberattacks, according to Microsoft president Brad Smith.

Github’s chief strategy officer Julio Avalos wrote in a separate blog post that “protecting the Internet is becoming more urgent every day as more fundamental vulnerabilities in infrastructure are discovered—and in some cases used by government organizations for cyberattacks that threaten to make the Internet a theater of war.” He continued: “Reaching industry-wide agreement on security principles and collaborating with global technology companies is a crucial step toward securing our future.”

Added Sridhar Muppidi, Co-CTO of IBM Security about the company’s efforts to help cybersecurity teams collaborate like the attackers they’re working against, in a recent published interview: The good guys have to collaborate with each other so that we can provide a better and more secure and robust systems. So we talk about how we share the good intelligence. We also talk about sharing good practices, so that we can then build more robust systems, which are a lot more secure.

It’s the same concept of open source model, where you provide some level of intellectual capital with an opportunity to bring in a bigger community together so that we can take the problem and solve it better and faster. And learn from each other’s mistakes and each other’s advancement so that it can help, individually, each of our offerings. So, end of the day, for a topic like AI, the algorithm is going to be an algorithm. It’s the data, it’s the models, it’s the set of things which go around it which make it very robust and reliable, Muppidi continued.

IBM appears to be practicing what it preaches by facilitating the collaboration of people and machines in defense of cyberspace. Last year at RSA, IBM introduced Watson to the cybersecurity industry to augment the skills of analysts in their security investigations. This year investments and artificial intelligence (AI), according to IBM, were made with a larger vision in mind: a move toward “automation of response” in cybersecurity.

At RSA, IBM also announced the next-generation IBM Resilient Incident Response Platform (IRP) with Intelligent Orchestration. The new platform promises to accelerate and sharpen incident response by seamlessly combining incident case management, orchestration, automation, AI, and deep two-way partner integrations into a single platform.

Maybe DancingDinosaur, which has spent decades acting as an IT-organization-of-one, can finally turn over some of the security chores to an intelligent system, which hopefully will do it better and faster.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Introduces Skinny Z Systems

April 13, 2018

Early this week IBM unveiled two miniaturized mainframe models, dubbed skinny mainframes, it said are easier to deploy in a public or private cloud facility than their more traditional, much bulkier predecessors. Relying on all their design tricks, IBM engineers managed to pack each machine into a standard 19-inch rack with space to spare, which can be used for additional components.

Z14 LinuxONE Rockhopper II, 19-inch rack

The first new mainframe introduced this week, also in a 19-inch rack, is the Z14 model ZR1. You can expect subsequent models to increment the model numbering.  The second new machine is the LinuxONE Rockhopper II, also in a 19-inch rack.

In the past, about a year after IBM introduced a new mainframe, say the z10, it was introduced what it called a Business Class (BC) version. The BC machines were less richly configured, less expandable but delivered comparable performance with lower capacity and a distinctly lower price.

In a Q&A analyst session IBM insisted the new machines would be priced noticeably lower, as were the BC-class machines of the past. These are not comparable to the old BC machines. Instead, they are intended to attract a new group of users who face new challenges. As such, they come cloud-ready. The 19-inch industry standard, single-frame design is intended for easy placement into existing cloud data centers alongside other components and private cloud environments.

The company, said Ross Mauri, General Manager IBM Z, is targeting the new machines toward clients seeking robust security with pervasive encryption, cloud capabilities and powerful analytics through machine learning. Not only, he continued, does this increase security and capability in on-premises and hybrid cloud environments for clients, IBM will also deploy the new systems in IBM public cloud data centers as the company focuses on enhancing security and performance for increasingly intensive data loads.

In terms of security, the new machines will be hard to beat. IBM reports the new machines capable of processing over 850 million fully encrypted transactions a day on a single system. Along the same lines, the new mainframes do not require special space, cooling or energy. They do, however, still provide IBM’s pervasive encryption and Secure Service Container technology, which secures data serving at a massive scale.

Ross continued: The new IBM Z and IBM LinuxONE offerings also bring significant increases in capacity, performance, memory and cache across nearly all aspects of the system. A complete system redesign delivers this capacity growth in 40 percent less space and is standardized to be deployed in any data center. The z14 ZR1 can be the foundation for an IBM Cloud Private solution, creating a data-center-in-a-box by co-locating storage, networking and other elements in the same physical frame as the mainframe server.  This is where you can utilize that extra space, which was included in the 19-inch rack.

The LinuxONE Rockhopper II can also accommodate a Docker-certified infrastructure for Docker EE with integrated management and scale tested up to 330,000 Docker containers –allowing developers to build high-performance applications and embrace a micro-services architecture.

The 19-inch rack, however, comes with tradeoffs, notes Timothy Green writing in The Motley Fool. Yes, it takes up 40% less floor space than the full-size Z14, but accommodates only 30 processor cores, far below the 170 cores supported by a full size Z14, , which fills a 24-inch rack. Both new systems can handle around 850 million fully encrypted transactions per day, a fraction of the Z14’s full capacity. But not every company needs the full performance and capacity of the traditional mainframe. For companies that don’t need the full power of a Z14 mainframe, notes Green, or that have previously balked at the high price or massive footprint of full mainframe systems, these smaller mainframes may be just what it takes to bring them to the Z. Now IBM needs to come through with the advantageous pricing they insisted they would offer.

The new skinny mainframe are just the latest in IBM’s continuing efforts to keep the mainframe relevant. It began over a decade ago with porting Linux to the mainframe. It continued with Hadoop, blockchain, and containers. Machine learning and deep learning are coming right along.  The only question for DancingDinosaur is when IBM engineers will figure out how to put quantum computing on the Z and squeeze it into customers’ public or private cloud environments.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Shouldn’t Forget Its Server Platforms

April 5, 2018

The word coming out of IBM brings a steady patter about cognitive, Watson, and quantum computing, for which IBM predicted quantum would be going mainstream within five years. Most DancingDinosaur readers aren’t worrying about what’s coming in 2023 although maybe they should. They have data centers to run now and are wondering where they are going to get the system horsepower they will need to deliver IoT or Blockchain or any number of business initiatives clamoring for system resources today or tomorrow and all they’ve got are the z14 and the latest LinuxONE. As powerful as they were when first announced, do you think that will be enough tomorrow?

IBM’s latest server, the Z

Timothy Prickett Morgan, analyst at The Next Platform, apparently isn’t so sure. He writes in a recent piece how Google and the other hyperscalers need to add serious power to today’s server options. The solution involves “putting systems based on IBM’s Power9 processor into production.” This shouldn’t take anybody by surprise; almost as soon as IBM set up the Open Power consortium Rackspace, Google, and a handful of others started making noises about using Open POWER for a new type of data center server. The most recent announcements around Power9, covered here back in Feb., promise some new options with even more coming.

Writes Morgan: “Google now has seven applications that have more than 1 billion users – adding Android, Maps, Chrome, and Play to the mix – and as the company told us years ago, it is looking for any compute, storage, and networking edge that will allow it to beat Moore’s Law.” Notice that this isn’t about using POWER9 to drive down Intel’s server prices; Google faces a more important nemesis, the constraints of Moore’s Law.

Google has not been secretive about this, at least not recently. To its credit Google is making its frustrations known at appropriate industry events:  “With a technology trend slowdown and growing demand and changing demand, we have a pretty challenging situation, what we call a supply-demand gap, which means the supply on the technology side is not keeping up with this phenomenal demand growth,” explained Maire Mahony, systems hardware engineer at Google and its key representative at the OpenPower Foundation that is steering the Power ecosystem. “That makes it hard to for us to balance that curve we call performance per TCO dollar. This problem is not unique to Google. This is an industry-wide problem.” True, but the majority of data centers, even the biggest ones, don’t face looming multi-billion user performance and scalability demands.

Morgan continued: “Google has absolutely no choice but to look for every edge. The benefits of homogeneity, which have been paramount for the first decade of hyperscaling, no longer outweigh the need to have hardware that better supports the software companies like Google use in production.”

This isn’t Intel’s problem alone although it introduced a new generation of systems, dubbed Skylake, to address some of these concerns. As Morgan noted recently, “various ARM chips –especially ThunderX2 from Cavium and Centriq 2400 from Qualcomm –can boost non-X86 numbers.” So can AMD’s Epyc X86 processors. Similarly, the Open Power consortium offers an alternative in POWER9.

Morgan went on: IBM differentiated the hardware with its NVLink versions and, depending on the workload and the competition, with its most aggressive pricing and a leaner and cheaper microcode and hypervisor stack reserved for the Linux workloads that the company is chasing. IBM very much wants to sell its Power-Linux combo against Intel’s Xeon-Linux and also keep AMD’s Epyc-Linux at bay. Still, it is not apparent to Morgan how POWER9 will compete.

Success may come down to a battle of vendor ecosystems. As Morgan points out: aside from the POWER9 system that Google co-engineered with Rackspace Hosting, the most important contributions that Google has made to the OpenPower effort is to work with IBM to create the OPAL firmware, the OpenKVM hypervisor, and the OpenBMC baseboard management controller, which are all crafted to support little endian Linux, as is common on x86.

Guess this is the time wade into the endian morass. Endian refers to the byte ordering that is used, and IBM chips and a few others do them in reverse of the x86 and Arm architectures. The Power8 chip and its POWER9 follow-on support either mode, big or little endian. By making all of these changes, IBM has made the Power platform more palatable to the hyperscalers, which is why Google, Tencent, Alibaba, Uber, and PayPal all talk about how they make use of Power machinery, particularly to accelerate machine learning and generic back-end workloads. But as quickly as IBM jumped on the problem recently after letting it linger for years, it remains one more complication that must be considered. Keep that in mind when a hyperscaler like Google talks about performance per TCO dollar.

Where is all this going? Your guess is as good as any. The hyperscalers and the consortia eventually should resolve this and DancingDinosaur will keep watching. Stay tuned.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

Mainframe ISVs Advance the Mainframe While IBM Focuses on Think

March 30, 2018

Last week IBM reveled in the attention of upwards of 30,000 visitors to its Think conference, reportedly a record for an IBM conference. Meanwhile Syncsort and Compuware stayed home pushing new mainframe initiatives. Specifically, Syncsort introduced innovations to deliver mainframe log and application data in real-time directly to Elastic for deeper next generation analytics through like Splunk, Hadoop and the Elastic Stack.

Syncsort Ironstone for next-gen analytics

Compuware reported that the percentage of organizations running at least half their business-critical applications on the mainframe expected to increase next year, although the loss of skilled mainframe staff, and the failure to subsequently fill those positions pose significant threats to application quality, velocity and efficiency. Compuware has been taking the lead in modernizing the mainframe developer experience to make it compatible with the familiar x86 experience.

According to David Hodgson, Syncsort’s chief product officer, many organizations are using Elastic’s Kibana to visualize Elasticsearch data and navigate the Elastic Stack. These organizations, like others, are turning to tools like Hadoop and Splunk to get a 360-degree view of their mainframe data enterprise-wide. “In keeping with our proven track record of enabling our customers to quickly extract value from their critical data anytime, anywhere, we are empowering enterprises to make better decisions by making mission-critical mainframe data available in another popular analytics platform,” he adds.

For cost management, Syncsort now offers Ironstream with the flexibility of MSU-based (capacity) or Ingestion-based pricing.

Compuware took a more global view of the mainframe. The mainframe, the company notes, is becoming more important to large enterprises as the percentage of organizations running at least half their business-critical applications on that platform expected to increase next year. However, the loss of skilled mainframe staff, and the failure to subsequently fill those positions, pose significant threats to application quality, velocity and efficiency.

These are among the findings of research and analysis conducted by Forrester Consulting on behalf of Compuware.  According to the study, “As mainframe workload increases—driven by modern analytics, blockchain and more mobile activity hitting the platform—customer-obsessed companies should seek to modernize application delivery and remove roadblocks to innovation.”

The survey of mainframe decision-makers and developers in the US and Europe also revealed the growing mainframe importance–64 percent of enterprises will run more than half of their critical applications on the platform within the next year, up from 57 percent this year. And just to ratchet up the pressure a few notches, 72 percent of customer-facing applications at these enterprises are completely or very reliant on mainframe processing.

That means the loss of essential mainframe staff hurts, putting critical business processes at risk. Overall, enterprises reported losing an average of 23 percent of specialized mainframe staff in the last five years while 63 percent of those positions have not been filled.

There is more to the study, but these findings alone suggest that mainframe investments, culture, and management practices need to evolve fast in light of the changing market realities. As Forrester puts it: “IT decision makers cannot afford to treat their mainframe applications as static environments bound by long release cycles, nor can they fail to respond to their critical dependence with a retiring workforce. Instead, firms must implement the modern tools necessary to accelerate not only the quality, but the speed and efficiency of their mainframe, as well as draw [new] people to work on the platform.”

Nobody has 10 years or even three years to cultivate a new mainframer. You need to attract and cultivate talented x86 or ARM people now, equip each—him or her—with the sexiest, most efficient tools, and get them working on the most urgent items at the top of your backlog.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

 


%d bloggers like this: