Posts Tagged ‘Big Data’

IBM Puts Open DBaaS on IBM OpenPOWER LC Servers

June 15, 2017

Sometimes IBM seems to be thrashing around looking for anything hot that’s selling, and the various NoSQL databases definitely are hot. The interest is driven by DevOps, cloud, and demand for apps fast.

A month or so ago the company took its Power LC server platform to the OpenPOWER Developer Conference in San Francisco where they pitched Database-as-a-Service (DBaaS) and a price-performance guarantee: OpenPOWER LC servers designed specifically for Big Data to deliver a 2.0x price-performance advantage over x86 for MongoDB and 1.8x for EDB PostgreSQL 9.5 guaranteed. With organizations seeking any performance advantage, these gains matter.

There are enough caveats that IBM will almost never be called to deliver on the guarantee. So, don’t expect to cash in on this very quickly. As IBM says in the miles of fine print: the company will provide additional performance optimization and tuning services consistent with IBM Best Practices, at no charge.  But the guarantee sounds intriguing. If you try it, please let DancingDinosaur know how it works out.

IBM Power System S822LC for Big Data

BTW, IBM published the price for the S822LC for big data as starting at $6,399.00 USD. Price includes shipping. Linux OS, however, comes for an additional charge.

Surprisingly, IBM is not aiming this primarily to the IBM Cloud. Rather, the company is targeting the private cloud, the on-premises local version. Its Open DBaaS toolkit, according to IBM, provides enterprise clients with a turnkey private cloud solution that pre-integrates an Open Source DB image library, OpenStack-based private cloud, and DBaaS software packages with hardware (servers/storage/network switches/rack) and a single source of support to enable a DBaaS self-service portal for enterprise developers and LOB users to provision MongoDB, Postgres, and others in minutes. But since it is built on OpenStack, it also supports hybrid cloud integration with IBM Cloud offerings via OpenStack APIs.

In terms of cost it seems remarkably reasonable. It comes in four reference configurations. The Starter configuration is ~$80k (US list price) and includes 3 Power 822LC servers, pair of network switches, rack, DBaaS Toolkit software, and IBM Lab Services. Other configurations include Entry, Cloud Scale, and Performance configurations that have been specified for additional compute, storage, and OpenStack control plane nodes along with high-capacity JBOD storage drawers. To make this even easier, each configuration can be customized to meet user requirements. Organizations also can provide their own racks and/or network switches.

Furthermore, the Power 822LC and Power 821LC form the key building blocks for the compute, storage and OpenStack control plane nodes. As a bonus, however, IBM includes the new 11-core Power 822LC, which provides an additional 10-15% performance boost over the 10-core Power 822LC for the same price.

This is a package deal, at least if you want the best price and to deploy it fast. “As the need for new applications to be delivered faster than ever increases in a digital world, developers are turning to modern software development models including DevOps, as-a-Service, and self-service to increase the volume, velocity and variety of business applications,” said Terri Virnig, VP, Power Ecosystem and Strategy at IBM. Open Platform for DBaaS on IBM in the announcement. Power Systems DBaaS package  includes:

  • A self-service portal for end users to deploy their choice of the most popular open source community databases including MongoDB, PostgreSQL, MySQL, MariaDB, Redis, Neo4j and Apache Cassandra deployable in minutes
  • An elastic cloud infrastructure for a highly scalable, automated, economical, and reliable open platform for on-premises, private cloud delivery of DBaaS
  • A disk image builder tool for organizations that want to build and deploy their own custom databases to the database image library

An open source, cloud-oriented operations manager with dashboards and tools will help you visualize, control, monitor, and analyze the physical and virtual resources. A turnkey, engineered solution comprised of compute, block and archive storage servers, JBOD disk drawers, OpenStack control plane nodes, and network switches pre-integrated with the open source DBaaS toolkit is available through GitHub here.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Syncsort Drives zSystem and Distributed Data Integration

June 8, 2017

IBM appears to be so busy pursuing its strategic imperatives—security, blockchain, quantum computing, and cognitive computing—that it seems to have forgotten the daily activities that make up the bread-and-butter of mainframe data centers. Stepping up to fill the gap have been mainframe ISVs like Compuware, Syncsort, Data Kinetics, and a few others.

IBM’s Project DataWorks taps into unstructured data often missed

IBM hasn’t completely ignored this need. For instance, Project DataWorks uses Watson Analytics and natural language processing to analyze and create complex visualizations. Syncsort, on the other hand, latched onto open Apache technologies, starting in the fall of 2015. Back then it introduced a set of tools to facilitate data integration through Apache Kafka and Apache Spark, two of the most active Big Data open source projects for handling real-time, large-scale data processing, feeds, and analytics.

Syncsort’s primary integration vehicle then revolved around the Intelligent Execution capabilities of its DMX data integration product suite with Apache Spark. Intelligent Execution allows users to visually design data transformations once and then run them anywhere – across Hadoop, MapReduce, Spark, Linux, Windows, or Unix, both on premise or in the cloud.

Since then Syncsort, in March, announced another big data integration solution. This time its DMX-h, is now integrated with Cloudera Director, enabling organizations to easily deploy DMX-h along with Cloudera Enterprise on Amazon Web Services, Microsoft Azure, or Google Cloud. By deploying DMX-h with CDH, Syncsort explained, organizations can quickly pull data into new, ready-to-work clusters in the cloud. This accelerates how quickly they can take advantage of big data cloud benefits, including cost savings and Data-as-a-Service (DaaS) delivery.

A month before that, this past February, Syncsort introduced new enhancements in its Big Data integration solution by again deploying DMX-h to deliver integrated workflow capabilities and Spark 2.0 integration, which simplifies Hadoop and Spark application development, effectively enabling mainframe data centers to extract maximum value from their data assets.

In addition, Syncsort brought new integrated workflow capabilities and Spark 2.0 integration to simplify Hadoop and Spark application development. It lets data centers tap value from their enterprise data assets regardless of where it resides, whether on the mainframe, in distributed systems, or in the cloud.

Syncsort’s new integrated workflow capability also gives organizations a simpler, more flexible way to create and manage their data pipelines. This is done through the company’s design-once, deploy-anywhere architecture with support for Apache Spark 2.0, which makes it easy for organizations to take advantage of the benefits of Spark 2.0 and integrated workflow without spending time and resources redeveloping their jobs.

Assembling such an end-to-end data pipeline can be time-consuming and complicated, with various workloads executed on multiple platforms, all of which need to be orchestrated and kept up to date. Delays in such complicated development, however, can prevent organizations from getting the timely insights they need for effective decision-making.

Enter Syncsort’s Integrated Workflow, which helps organizations manage various workloads, such as batch ETL on large repositories of historical data. This can be done by referencing business rules during data ingest in a single workflow, in effect simplifying and speeding development of the entire data pipeline, from accessing critical enterprise data, to transforming that data, and ultimately analyzing it for business insights.

Finally, in October 2016 Syncsort announced new capabilities in its Ironstream software that allows organizations to access and integrate mainframe log data in real-time to Splunk IT Service Intelligence (ITSI). Further, the integration of Ironstream and Compuware’s Application Audit software deliver the audit data to Splunk Enterprise Security (ES) for Security Information and Event Management (SIEM). This integration improves an organization’s ability to detect threats against critical mainframe data, correlate them with related information and events, and satisfy compliance requirements.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Introduces Hitachi-Specific z13

May 30, 2017

Remember when rumors were flying that Hitachi planned to buy the mainframe z Systems business from IBM?  DancingDinosaur didn’t believe it at that time, and now we have an official announcement that IBM is working with Hitachi to deliver mainframe z System hardware for use with Hitachi customers.

Inside the IBM z13

DancingDinosaur couldn’t see Hitachi buying the z. The overhead would be too great. IBM has been sinking hundreds of millions of dollars into the z, adding new capabilities ranging from Hadoop and Spark natively on z to whatever comes out of the Open Mainframe Project.

The new Hitachi deal takes the z in a completely different direction. The plans calls for using Hitachi’s operating system, VOS3, running on the latest IBM z13 hardware to provide Hitachi users with better performance while sustaining their previous investments in business-critical Hitachi data and software, as IBM noted. VOS3 started as a fork of MVS and has been repeatedly modified since.

According to IBM, Hitachi will exclusively adopt the IBM z Systems high-performance mainframe hardware technology as the only hardware for the next generation of Hitachi’s AP series. These systems primarily serve major organizations in Japan. This work expands Hitachi’s cooperation with IBM to make mainframe development more efficient through IBM’s global capabilities in developing and manufacturing mainframe systems. The Open Mainframe Project, BTW, is a Linux initiative.

The collaboration, noted IBM, reinforces its commitment to delivering new innovations in mainframe technology and fostering an open ecosystem for the mainframe to support a broad range of software and applications. IBM recently launched offerings for IBM z Systems that use the platform’s capabilities for speed, scale and security to deliver cloud-based blockchain services for building new transaction systems and machine learning for analyzing large amounts of data.

If you count VOS3, the mainframe now runs a variety of operating systems, including z/OS, z/TPF and z/VM operating systems as well as the Linux. Reportedly, Hitachi plans to integrate its new mainframe with its Lumada Internet of Things (IoT) offerings. With z scalability, security, massive I/O, and performance the z makes an ideal IoT platform, and IoT is a market IBM targets today. Now IBM is seeding a competitor with the z running whatever appealing capabilities Hitachi’s Lumada offers. Hope whatever revenue or royalties IBM gets is worth it.

IBM and Hitachi, as explained in the announcement, have a long history of cooperation and collaboration in enterprise computing technologies. Hitachi decided to expand this cooperation at this time to utilize IBM’s most advanced mainframe technologies. Hitachi will continue to provide its customers with a highly reliable, high-performance mainframe environment built around the Hitachi VOS3 operating system. Hitachi also continues to strengthen mainframe functionality and services which contributes to lower TCO, improved ease of system introduction and operation, and better serviceability.

Of course, the mainframe story is far from over. IBM has been hinting at a new mainframe coming later this year for months.  Since IBM stopped just automatically cranking up core processor speed to boost price/performance it will employ an array of assist processors and software optimizations to boost performance wherever it can, but particularly in the area of its current critical imperatives—security, cognitive computing, blockchain, and cloud. One thing DancingDinosaur doesn’t expect to see in the new z, however, will be cubits embedded, but who knows?

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Gets Serious About Open Data Science (ODS) with Anaconda

April 21, 2017

As IBM rapidly ramps up cognitive systems in various forms, its two remaining platforms, z System and POWER, get more and more interesting. This week IBM announced it was bringing the Anaconda Open Data Science (ODS) platform to its Cognitive Systems and PowerAI.

Anaconda, Courtesy Pinterest

Specifically, Anaconda will integrate with the PowerAI software distribution for machine learning (ML) and deep learning (DL). The goal: make it simple and fast to take advantage of Power performance and GPU optimization for data-intensive cognitive workloads.

“Anaconda on IBM Cognitive Systems empowers developers and data scientists to build and deploy deep learning applications that are ready to scale,” said Bob Picciano, senior vice president of IBM Cognitive Systems. Added Travis Oliphant, co-founder and chief data scientist, Continuum Analytics, which introduced the Anaconda platform: “By optimizing Anaconda on Power, developers will also gain access to the libraries in the PowerAI Platform for exploration and deployment in Anaconda Enterprise.”

With more than 16 million downloads to date, Anaconda has emerged as the Open Data Science platform leader. It is empowering leading businesses across industries worldwide with tools to identify patterns in data, uncover key insights, and transform basic data into the intelligence required to solve the world’s most challenging problems.

As one of the fastest growing fields of AI, DL makes it possible to process enormous datasets with millions or even billions of elements and extract useful predictive models. DL is transforming the businesses of leading consumer Web and mobile application companies, and it is catching on with more traditional business.

IBM developed PowerAI to accelerate enterprise adoption of open-source ML and DL frameworks used to build cognitive applications. PowerAI promises to reduce the complexity and risk of deploying these open source frameworks for enterprises on the Power architecture and is tuned for high performance, according to IBM. With PowerAI, organizations also can realize the benefit of enterprise support on IBM Cognitive Systems HPC platforms used in the most demanding commercial, academic, and hyperscale environments

For POWER shops getting into Anaconda, which is based on Python, is straightforward. You need a Power8 with IBM GPU hardware or a Power8 combined with a Nvidia GPU, in effect a Minsky machine. It’s essentially a developer’s tool although ODS proponents see it more broadly, bridging the gap between traditional IT and lines of business, shifting traditional roles, and creating new roles. In short, they envision scientists, mathematicians, engineers, business people, and more getting involved in ODS.

The technology is designed to run on the user’s desktop but is packaged and priced as a cloud subscription with a base package of 20 users. User licenses range from $500 per year to $30,000 per year depending on which bells and whistles you include. The number of options is pretty extensive.

According to IBM, this started with PowerAI to accelerate enterprise adoption of open-source ML/DL learning frameworks used to build cognitive applications. Overall, the open Anaconda platform brings capabilities for large-scale data processing, predictive analytics, and scientific computing to simplify package management and deployment. Developers using open source ML/DL components can use Power as the deployment platform and take advantage of Power optimization and GPU differentiation for NVIDIA.

Not to be left out, IBM noted growing support for the OpenPOWER Foundation, which recently announced the OpenPOWER Machine Learning Work Group (OPMLWG). The new OPMLWG includes members like Google, NVIDIA and Mellanox to provide a forum for collaboration that will help define frameworks for the productive development and deployment of ML solutions using OpenPOWER ecosystem technology. The foundation has also surpassed 300-members, with new participants such as Kinetica, Red Hat, and Toshiba. For traditional enterprise data centers, the future increasingly is pointing toward cognitive in one form or another.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Changes the Economics of Cloud Storage

March 31, 2017

Storage tiering used to be simple: active data went to your best high performance storage, inactive data went to low cost archival storage, and cloud storage filled in for one or whatever else was needed. Unfortunately, today’s emphasis on continuous data analytics, near real-time predictive analytics, and now cognitive has complicated this picture and the corresponding economics of storage.

In response, last week IBM unveiled new additions to the IBM Cloud Object Storage family. The company is offering clients new choices for archival data and a new pricing model to more easily apply intelligence to unpredictable data patterns using analytics and cognitive tools.

Analytics drive new IBM cloud storage pricing

By now, line of business (LOB) managers, having been exhorted to leverage big data and analytics for years, are listening. More recently, the analytics drumbeat has expanded to include not just big data but sexy IoT, predictive analytics, machine learning, and finally cognitive science. The idea of keeping data around for a few months and parking it in a long term archive to never be looked at again until it is finally deleted permanently just isn’t happening as it was supposed to (if it ever did). The failure to permanently remove expired data can become costly from a storage standpoint as well as risky from an e-discovery standpoint.

IBM puts it this way: Businesses typically have to manage across three types of data workloads: “hot” for data that’s frequently accessed and used; “cool” for data that’s infrequently accessed and used; and “cold” for archival data. Cold storage is often defined as cheaper but slower. For example, if a business uses cold storage, it typically has to wait to retrieve and access that data, limiting the ability to rapidly derive analytical or cognitive insights. As a result, there is a tendency to store data in more expensive hot storage.

IBM’s new cloud storage offering, IBM Cloud Object Storage Flex (Flex), uses a “pay as you use” model of storage tiers potentially lowering the price by 53 percent compared to AWS S3 IA1 and 75 percent compared to Azure GRS Cool Tier.2 (See footnotes at the bottom of the IBM press release linked to above. However IBM is not publishing the actual Flex storage prices.) Flex, IBM’s new cloud storage service, promises simplified pricing for clients whose data usage patterns are difficult to predict. Flex promises organizations will benefit from the cost savings of cold storage for rarely accessed data, while maintaining high accessibility to all data.

Of course, you could just lower the cost of storage by permanently removing unneeded data.  Simply insist that the data owners specify an expiration date when you set up the storage initially. When the date arrives in 5, 10, 15 years automatically delete the data. At least that’s how I was taught eons ago. Of course storage costs orders of magnitude less now although storage volumes are orders of magnitude greater and near real-time analytics weren’t in the picture.

Without the actual rates for the different storage tiers you cannot determine how much Storage Flex may save you.  What it will do, however, is make it more convenient to perform analytics on archived data you might otherwise not bother with.  Expect this issue to come up increasingly as IoT ramps up and you are handling more data that doesn’t need hot storage beyond the first few minutes of its arrival.

Finally, the IBM Cloud Object Storage Cold Vault (Cold Vault) service gives clients access to cold storage data on the IBM Cloud and is intended to lead the category for cold data recovery times among its major competitors. Cold Vault joins its existing Standard and Vault tiers to complete a range of IBM cloud storage tiers that are available with expanded expertise and methods via Bluemix and through the IBM Bluemix Garages.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Open POWER-Open Compute-POWER9 at Open Compute Summit

March 16, 2017

Bryan Talik, President, OpenPOWER Foundation provides a detailed rundown on the action at the Open Compute  Summit held last week in Santa Clara. After weeks of writing about Cognitive, Machine Learning, Blockchain, and even quantum computing, it is a nice shift to conventional computing platforms that should still be viewed as strategic initiatives.

The OpenPOWER, Open Compute gospel was filling the air in Santa Clara.  As reported, Andy Walsh, Xilinx Director of Strategic Market Development and OpenPOWER Foundation Board member explained, “We very much support open standards and the broad innovation they foster. Open Compute and OpenPOWER are catalysts in enabling new data center capabilities in computing, storage, and networking.”

Added Adam Smith, CEO of Alpha Data:  “Open standards and communities lead to rapid innovation…We are proud to support the latest advances of OpenPOWER accelerator technology featuring Xilinx FPGAs.”

John Zannos, Canonical OpenPOWER Board Chair chimed in: For 2017, the OpenPOWER Board approved four areas of focus that include machine learning/AI, database and analytics, cloud applications and containers. The strategy for 2017 also includes plans to extend OpenPOWER’s reach worldwide and promote technical innovations at various academic labs and in industry. Finally, the group plans to open additional application-oriented workgroups to further technical solutions that benefits specific application areas.

Not surprisingly, some members even see collaboration as the key to satisfying the performance demands that the computing market craves. “The computing industry is at an inflection point between conventional processing and specialized processing,” according to Aaron Sullivan, distinguished engineer at Rackspace. “

To satisfy this shift, Rackspace and Google announced an OCP-OpenPOWER server platform last year, codenamed Zaius and Barreleye G2.  It is based on POWER9. At the OCP Summit, both companies put on a public display of the two products.

This server platform promises to improve the performance, bandwidth, and power consumption demands for emerging applications that leverage machine learning, cognitive systems, real-time analytics and big data platforms. The OCP players plan to continue their work alongside Google, OpenPOWER, OpenCAPI, and other Zaius project members.

Andy Walsh, Xilinx Director of Strategic Market Development and OpenPOWER Foundation Board member explains: “We very much support open standards and the broad innovation they foster. Open Compute and OpenPOWER are catalysts in enabling new data center capabilities in computing, storage, and networking.”

This Zaius and Barreleye G@ server platforms promise to advance the performance, bandwidth and power consumption demands for emerging applications that leverage the latest advanced technologies. These latest technologies are none other than the strategic imperatives–cognitive, machine learning, real-time analytics–IBM has been repeating like a mantra for months.

Open Compute Projects also were displayed at the Summit. Specifically, as reported: Google and Rackspace, published the Zaius specification to Open Compute in October 2016, and had engineers to explain the specification process and to give attendees a starting point for their own server design.

Other Open Compute members, reportedly, also were there. Inventec showed a POWER9 OpenPOWER server based on the Zaius server specification. Mellanox showcased ConnectX-5, its next generation networking adaptor that features 100Gb/s Infiniband and Ethernet. This adaptor supports PCIe Gen4 and CAPI2.0, providing a higher performance and a coherent connection to the POWER9 processor vs. PCIe Gen3.

Others, reported by Talik, included Wistron and E4 Computing, which showcased their newly announced OCP-form factor POWER8 server. Featuring two POWER8 processors, four NVIDIA Tesla P100 GPUs with the NVLink interconnect, and liquid cooling, the new platform represents an ideal OCP-compliant HPC system.

Talik also reported IBM, Xilinx, and Alpha Data showed their line ups of several FPGA adaptors designed for both POWER8 and POWER9. Featuring PCIe Gen3, CAPI1.0 for POWER8 and PCIe Gen4, CAPI2.0 and 25G/s CAPI3.0 for POWER9 these new FPGAs bring acceleration to a whole new level. OpenPOWER member engineers were on-hand to provide information regarding the CAPI SNAP developer and programming framework as well as OpenCAPI.

Not to be left out, Talik reported that IBM showcased products it previously tested and demonstrated: POWER8-based OCP and OpenPOWER Barreleye servers running IBM’s Spectrum Scale software, a full-featured global parallel file system with roots in HPC and now widely adopted in commercial enterprises across all industries for data management at petabyte scale.  Guess compute platform isn’t quite the dirty phrase IBM has been implying for months.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Launches New IoT Collaborative Initiative

February 23, 2017

Collaboration partners can pull hundreds of millions of dollars in new revenue from IoT, according to IBM’s recent IoT announcement. Having reached what it describes as a tipping point with IoT innovation the company now boasts of having over 6,000 clients and partners around the world, many of whom are now wanting to join in its new global Watson IoT center to co-innovate. Already Avnet, BNP Paribas, Capgemini, and Tech Mahindra will collocate development teams at the IBM Munich center to work on IoT collaborations.

new-ibm-watson-iot-center

IBM Opens New Global Center for Watson IoT

The IBM center also will act as an innovation space for the European IoT standards organization EEBus.  The plan, according to Harriet Green, General Manager, IBM Watson IoT, Cognitive Engagement and Education (pictured above left), calls for building a new global IoT innovation ecosystem that will explore how cognitive and IoT technologies will transform industries and our daily lives.

IoT and more recently cognitive are naturals for the z System, and POWER Systems have been the platform for natural language processing and cognitive since Watson won Jeopardy three years ago. With the latest enhancements IBM has brought to the z in the form of on-premises cognitive and machine learning the z should assume an important role as it gathers, stores, collects, and processes IoT data for cognitive analysis. DancingDinosaur first reported on this late in 2014 and again just last week. As IoT and cognitive workloads ramp up on z don’t be surprised to see monthly workload charges rise.

Late last year IBM announced that car maker BMW will collocate part of its research and development operations at IBM’s new Watson IoT center to help reimagine the driving experience. Now, IBM is announcing four more companies that have signed up to join its special industry “collaboratories” where clients and partners work together with 1,000 Munich-based IBM IoT experts to tap into the latest design thinking and push the boundaries of the possible with IoT.

Let’s look at the four newest participants starting with Avnet. According to IBM, an IT distributor and global IBM partner, Avnet will open a new joint IoT Lab within IBM’s Watson IoT HQ to develop, build, demonstrate and sell IoT solutions powered by IBM Watson. Working closely with IBM’s leading technologists and IoT experts, Avnet also plans to enhance its IoT technical expertise through hands-on training and on-the-job learning. Avnet’s team of IoT and analytics experts will also partner with IBM on joint business development opportunities across multiple industries including smart buildings, smart homes, industry, transportation, medical, and consumer.

As reported by BNP Paribas, Consorsbank, its retail digital bank in Germany, will partner with IBM´s new Watson IoT Center. The company will collocate a team of solution architects, developers and business development personnel at the Watson facility. Together with IBM’s experts, they will explore how IoT and cognitive technologies can drive transformation in the banking industry and help innovate new financial products and services, such as investment advice.

Similarly, global IT consulting and technology services provider Capgemini will collocate a team of cognitive IoT experts at the Watson center. Together they will help customers maximize the potential of Industry 4.0 and develop and take to market sector-specific cognitive IoT solutions. Capgemini plans a close link between its Munich Applied Innovation Exchange and IBM’s new Customer Experience zones to collaborate with clients in an interactive environment.

Finally, the Indian multinational provider of enterprise and communications IT and networking technology Tech Mahindra, is one of IBM’s Global System Integrators with over 3,000 specialists focused on IBM technology around the world. The company will locate a team of six developers and engineers within the Watson IoT HQ to help deliver on Tech Mahindra’s vision of generating substantial new revenue based on IBM’s Watson IoT platform. Tech Mahindra will use the center to co-create and showcase new solutions based on IBM’s Watson IoT platform for Industry 4.0 and Manufacturing, Precision Farming, Healthcare, Insurance and Banking, and automotive.

To facilitate connecting the z to IoT IBM offers a simple recipe. It requires 4 basic ingredients and 4 steps: Texas Instrument’s SensorTag, a Bluemix account, IBM z/OS Connect Enterprise Edition, and a back-end service like CICS.  Start by exposing an existing z Systems application as a RESTful AP. This is where the z/OS Connect Edition comes in.  Then enable your SensorTag device to Watson IoT Quick Start. From there connect the Cloud to your on-premises Hybrid Cloud.  Finally, enable the published IoT data to trigger a RESTful API. Sounds pretty straightforward but—full disclosure—Dancing Dinosaur has not tried it due to lacking the necessary pieces. If you try it, please tell DancingDinosaur how it works (info@radding.net). Good luck.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM On-Premises Cognitive Means z Systems Only

February 16, 2017

Just in case you missed the incessant drumbeat coming out of IBM, the company committed to cognitive computing. But that works for z data centers since IBM’s cognitive system is available on-premises only for the z. Another z first: IBM just introduced Machine Learning (key for cognitive) for the private cloud starting with the z.

ibm-congitive-graphic

There are three ways to get IBM cognitive computing solutions: the IBM Cloud, Watson, or the z System, notes Donna Dillenberger, IBM Fellow, IBM Enterprise Solutions. The z, however, is the only platform that IBM supports for cognitive computing on premises (sorry, no Power). As such, the z represents the apex of programmatic computing, at least as IBM sees it. It also is the only IBM platform that supports cognitive natively; mainly in the form of Hadoop and Spark, both of which are programmatic tools.

What if your z told you that a given strategy had a 92% of success. It couldn’t do that until now with IBM’s recently released cognitive system for z.

Your z system today represents the peak of programmatic computing. That’s what everyone working in computers grew up with, going all the way back to Assembler, COBOL, and FORTRAN. Newer languages and operating systems have arrived since; today your mainframe can respond to Java or Linux and now Python and Anaconda. Still, all are based on the programmatic computing model.

IBM believes the future lies in cognitive computing. Cognitive has become the company’s latest strategic imperative, apparently trumping its previous strategic imperatives: cloud, analytics, big data, and mobile. Maybe only security, which quietly slipped in as a strategic imperative sometime 2016, can rival cognitive, at least for now.

Similarly, IBM describes itself as a cognitive solutions and cloud platform company. IBM’s infatuation with cognitive starts with data. Only cognitive computing will enable organizations to understand the flood of myriad data pouring in—consisting of structured, local data but going beyond to unlock the world of global unstructured data; and then to decision tree-driven, deterministic applications, and eventually, probabilistic systems that co-evolve with their users by learning along with them.

You need cognitive computing. It is the only way, as IBM puts it: to move beyond the constraints of programmatic computing. In the process, cognitive can take you past keyword-based search that provides a list of locations where an answer might be located to an intuitive, conversational means to discover a set of confidence-ranked possibilities.

Dillenberger suggests it won’t be difficult to get to the IBM cognitive system on z . You don’t even program a cognitive system. At most, you train it, and even then the cognitive system will do the heavy lifting by finding the most appropriate training models. If you don’t have preexisting training models, “just use what the cognitive system thinks is best,” she adds. Then the cognitive system will see what happens and learn from it, tweaking the models as necessary based on the results and new data it encounters. This also is where machine learning comes in.

IBM has yet to document payback and ROI data. Dillenberger, however, has spoken with early adopters.  The big promised payback, of course, will come from the new insights uncovered and the payback will be as astronomical or meager as you are in executing on those insights.

But there also is the promise of a quick technical payback for z data centers managers. When the data resides on z—a huge advantage for the z—you just run analytics where the data is. In such cases you can realize up to 3x the performance, Dillenberger noted.  Even if you have to pull data from some other location too you still run faster, maybe 2x faster. Other z advantages include large amounts of memory, multiple levels of cache, and multiple I/O processors get at data without impacting CPU performance.

When the data and IBM’s cognitive system resides on the z you can save significant money. “ETL consumed huge amounts of MIPS. But when the client did it all on the z, it completely avoided the costly ETL process,” Dillenberger noted. As a result, that client reported savings of $7-8 million dollars a year by completely bypassing the x-86 layer and ETL and running Spark natively on the z.

As Dillenberger describes it, cognitive computing on the z is here now, able to deliver a payback fast, and an even bigger payback going forward as you execute on the insights it reveals. And you already have a z, the only on-premises way to IBM’s Cognitive System.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Unveils Enhanced Repackaged Spectrum Storage

February 9, 2017

IBM appears to be gaining traction with its growing Spectrum SDS family of storage products re-introduced this week. According to the company, 87 of the Fortune Global 100 use IBM Spectrum Storage. That breaks down to all 10 of the top 10 telecommunications companies and all 20 of the top 20 banks. In addition, 18 of the top 20 energy companies, 9 of the top 10 global healthcare companies, and 8 of the top 10 automobile manufacturers adopted Spectrum storage. In addition, IBM notes, 80 organizations pick IBM Spectrum storage every week.

Of course, that hasn’t been enough to turn incessant red ink into black. According to IBM’s 2016 year-end financials, systems (systems hardware—including storage—and operating systems software), posted revenues of $2.5 billion, down 12.5 percent. You can see DancingDinosaur’s report on the latest IBM financials here. Although IBM called out the z for gross profit margins improvements driven by z Systems performance there was nary a word about storage. Will follow upcoming quarterly reports to see if this increased traction translates into actual positive revenue. Stay tuned.

Over the shoulder shot of a group of business colleagues in a meeting around a conference table

IBM introduces Spectrum Computing, 6/16

The announcements this week included:

  • IBM Spectrum Storage Suite
  • IBM Spectrum Virtualize
  • IBM Spectrum Control
  • IBM Spectrum Accelerate
  • IBM Cloud Object Storage

IBM Spectrum Storage isn’t completely new. DancingDinosaur first covered the Spectrum storage introduction in mid-February, 2015. Actually IBM began offering SDS products in 2014 and gained some kudos for it from IDC. The latest announcement really amounts to a repackaging of the products as the IBM Spectrum Storage Suite along with a variety of enhancements, some of which are quite interesting.

For example, IBM Cloud Object Storage software allows new use cases and enables a standalone object store managed by IBM Spectrum Control. It also adds a new storage tier behind IBM Spectrum Scale and a primary pool target behind IBM Spectrum Protect in the form of a cloud container. IBM also continues its innovative licensing arrangement by which you pay for your storage capacity and then can allocate and re-allocate that capacity freely.

Spectrum Cloud Object storage also introduces unified NFS/Object access. This allows companies to store data in a file system structure on object storage using NFS access capability and access data stored as files via either a file or object interface. It has been optimized for scalability and file-to-object migration as well as being able to scale to millions of users and buckets/containers. Finally, it now supports IPv6 management of devices and all nodes in configuration.

IBM Spectrum Virtualize Software also is interesting. For example, it now supports Supermicro SuperServer 2028U-TRTP+ in addition to existing support for Lenovo System x3650 M5. IBM envisions service providers and enterprises deploying Supermicro servers to build new services based on IBM Spectrum Virtualize software to deliver virtualized storage services at a lower price point. Take note: both of these are 2u x86 boxes. They can also offer disaster recovery as a service for clients with SVC.

Finally, IBM has enhanced Spectrum Control in V5.2.13. Among the new capabilities: improved storage insights through new cloud-based storage analytics for Dell EMC VNX, VNXe, and VMAX. This should enable users to improve application performance and reduce storage costs. It also will extend capacity planning views include external storage for IBM Spectrum Scale’s transparent cloud tiering. For on-premises software the latest Spectrum Control offers new support for Dell EMC VNXe file storage.

Overall, the new Spectrum Control should simplify the life of storage managers. “IBM Spectrum Control gives me one pane of glass to manage spinning disk, file system clusters, and object storage, “said Bob Oesterlin, Sr. Principal Storage Engineer, Nuance, as reported by IBM. The ability to span IBM storage as well as that of other vendors should prove a winner.

Combined with other capabilities, such as Spectrum Accelerate V11.5.4’s data-at-rest encryption, ability to flexibly encrypt existing hot data in minutes without disruption, and support for standard key management tools (IBM Security Key Lifecycle Manager and SafeNet KeySecure) will add to the appeal of the enhanced IBM Spectrum Storage Suite. Will it be enough to turn IBM Systems’ red ink to black? We’ll all just have to watch the next few quarterly reports to know.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 


%d bloggers like this: