Posts Tagged ‘Big Data’

IBM’s POWER9 Races to AI

December 7, 2017

IBM is betting the future of its Power Systems on artificial intelligence (AI). The company introduced its newly designed POWER9 processor publicly this past Tuesday. The new machine, according to IBM, is capable of shortening the training of deep learning frameworks by nearly 4x, allowing enterprises to build more accurate AI applications, faster.

IBM engineer tests the POWER9

Designed for the post-CPU era, the core POWER9 building block is the IBM Power Systems AC922. The AC922, notes IBM, is the first to embed PCI-Express 4.0, next-generation NVIDIA NVLink, and OpenCAPI—3 interface accelerators—which together can accelerate data movement 9.5x faster than PCIe 3.0 based x86 systems. The AC922 is designed to drive demonstrable performance improvements across popular AI frameworks such as Chainer, TensorFlow and Caffe, as well as accelerated databases such as Kinetica.

More than a CPU under the AC922 cover

Depending on your sense of market timing, POWER9 may be coming at the best or worst time for IBM.  Notes industry observer Timothy Prickett Morgan, The Next Platform: “The server market is booming as 2017 comes to a close, and IBM is looking to try to catch the tailwind and lift its Power Systems business.”

As Morgan puts it, citing IDC 3Q17 server revenue figures, HPE and Dell are jockeying for the lead in the server space, and for the moment, HPE (including its H3C partnership in China) has the lead with $3.32 billion in revenues, compared to Dell’s $3.07 billion, while Dell was the shipment leader, with 503,000 machines sold in Q3 2017 versus HPE’s 501,400 machines shipped. IBM does not rank in the top five shippers but thanks in part to the Z and big Power8 boxes, IBM still holds the number three server revenue generator spot, with $1.09 billion in sales for the third quarter, according to IDC. The z system accounted for $673 million of that, up 63.8 percent year-on year due mainly to the new Z. If you do the math, Morgan continued, the Power Systems line accounted for $420.7 million in the period, down 7.2 percent from Q3 2016. This is not surprising given that customers held back knowing Power9 systems were coming.

To get Power Systems back to where it used to be, Morgan continued, IBM must increase revenues by a factor of three or so. The good news is that, thanks to the popularity of hybrid CPU-GPU systems, which cost around $65,000 per node from IBM, this isn’t impossible. Therefore, it should take fewer machines to rack up the revenue, even if it comes from a relatively modest number of footprints and not a huge number of Power9 processors. More than 90 percent of the compute in these systems is comprised of GPU accelerators, but due to bookkeeping magic, it all accrues to Power Systems when these machines are sold. Plus IBM reportedly will be installing over 10,000 such nodes for the US Department of Energy’s Summit and Sierra supercomputers in the coming two quarters, which should provide a nice bump. And once IBM gets the commercial Power9 systems into the field, sales should pick up again, Morgan expects.

IBM clearly is hoping POWER9 will cut into Intel x86 sales. But that may not happen as anticipated. Intel is bringing out its own advanced x86 Xeon machine, Skylake, rumored to be quite expensive. Don’t expect POWER9 systems to be cheap either. And the field is getting more crowded. Morgan noted various ARM chips –especially ThunderX2 from Cavium and Centriq 2400 from Qualcomm –can boost non-X86 numbers and divert sales from IBM’s Power9 system. Also, AMD’s Epyc X86 processors have a good chance of stealing some market share from Intel’s Skylake. So the Power9 will have to fight for every sale IBM wants and take nothing for granted.

No doubt POWER9 presents a good case and has a strong backer in Google, but even that might not be enough. Still, POWER9 sits at the heart of what is expected to be the most powerful data-intensive supercomputers in the world, the Summit and Sierra supercomputers, expected to knock off the world’s current fastest supercomputers from China.

Said Bart Sano, VP of Google Platforms: “Google is excited about IBM’s progress in the development of the latest POWER technology;” adding “the POWER9 OpenCAPI bus and large memory capabilities allow further opportunities for innovation in Google data centers.”

This really is about deep learning, one of the latest hot buzzwords today. Deep learning emerged as a fast growing machine learning method that extracts information by crunching through millions of processes and data to detect and rank the most important aspects of the data. IBM designed the POWER9 chip to manage free-flowing data, streaming sensors, and algorithms for data-intensive AI and deep learning workloads on Linux.  Are your people ready to take advantage of POWER9?

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Compuware Brings the Mainframe to AWS

October 6, 2017

IBM talks about the power of the cloud for the mainframe and has turned Bluemix into a cloud development and deployment platform for open systems. Where’s the Z?

Now Compuware has made for the past several years quarterly advances in its mainframe tooling, which are now  available through AWS. Not only have those advances made mainframe management and operations more intuitive and graphical through a string of Topaz releases, but with AWS it is now more accessible from anywhere. DancingDinosaur has been reporting on Compuware’s string of Topaz advances for two years, here, here, and here.

By tapping the power of both the cloud and the mainframe, enterprises can deploy Topaz to their global development workforce in minutes, accelerating the modernization of their mainframe environments. As Compuware noted: mainframe shops now have the choice of deploying Topaz on-premise or on AWS. By leveraging the cloud, they can deploy Topaz more quickly, securely, and scale without capital costs while benefiting from new Topaz features as soon as the company delivers them.

To make Topaz work on AWS Compuware turned to Amazon AppStream 2.0 technology, which provides for global development, test, and ops teams with immediate and secure cloud access to Compuware’s entire innovative mainframe Agile/DevOps solution stack, mainly Topaz. Amazon AppStream 2.0 is a fully managed, secure application streaming service that allows users to stream desktop applications from AWS to any device running a web browser.

Cloud-based deployment of Topaz, Compuware notes, allows for significantly faster implementation, simple administration, a virtual integrated development environment (IDE), adaptive capacity, and immediate developer access to software updates. The last of these is important, since Compuware has been maintaining a quarterly upgrade release schedule, in effect delivering new capabilities every 90 days.

Compuware is in the process of patenting technology to offer an intuitive, streamlined configuration menu that leverages AWS best practices to make it easy for mainframe admins to quickly configure secure connectivity between Topaz on AWS and their mainframe environment. It also enables the same connectivity to their existing cross-platform enterprise DevOps toolchains running on-premise, in the cloud, or both. The upshot: organizations can deploy Topaz across their global development workforce in minutes, accelerating the modernization of their mainframe environments.

Using Topaz on AWS, notes Compuware, mainframe shops can benefit in a variety of ways, specifically:

  • Modify, test and debug COBOL, PL/I, Assembler and other mainframe code via an Eclipse-based virtual IDE
  • Visualize complex and/or undocumented application logic and data relationships
  • Manage source code and promote artifacts through the DevOps lifecycle
  • Perform common tasks such as job submission, review, print and purge
  • Leverage a single data editor to discover, visualize, edit, compare, and protect mainframe files and data

The move to the Eclipse-based IDE presents a giant step for traditional mainframe shops trying to modernize. Eclipse is a leading open source IDE with IBM as a founding member. In addition to Eclipse, Compuware also integrates with other modern tools, including Jenkins, SonarSource, Altassian. Jenkins is an open source automation server written in Java that helps to automate the non-human part of software development process with continuous integration while facilitating technical aspects of continuous delivery. SonarSource enables visibility into mainframe application quality. Atlassian develops products for software developers, project managers, and content management and is best known for Jira, its issue tracking application.

Unlike many mainframe ISVs, Compuware has been actively partnering with various innovative vendors to extend the mainframe’s tool footprint and bring the kind of tools to the mainframe that young developers, especially Millennials, want. Yes, it is possible to access the sexy REST-based Web and mobile tools through IBM’s Bluemix, but for mainframe shops it appears kludgy. By giving its mainframe customers access through AWS to advanced tools, Compuware improves on this. And AWS beats Bluemix in terms of cloud penetration and low cost.

All mainframe ISVs should make their mainframe products accessible through the cloud if they want to keep their mainframe products relevant. IBM has its cloud; of course there is AWS, Microsoft has Azure, and Google rounds out the top four. These and others will keep cloud economics competitive for the foreseeable future. Hope to see you in the cloud.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

New Oracle SPARC M8 Mimics IBM Z

September 28, 2017

Not even two weeks ago, Oracle announced its eighth-generation SPARC platform, the SPARC M8, as an engineered system and as a cloud service. The new system promises the world’s most advanced processor, breakthrough performance, and security enhancements with Software in Silicon v2 for Oracle Cloud, Oracle Engineered Systems, and Servers. Furthermore, the new SPARC M8 line of servers and engineered systems extend the existing M7 portfolio products, and includes: SPARC T8-1 server, SPARC T8-2 server, SPARC T8-4 server, SPARC M8-8 server and Oracle SuperCluster M8.

Oracle SPARC M7

Pictured above is Oracle SPARC M7, the previous generation SPARC. The new SPARC M8 systems deliver up to 7x better performance, security capabilities, and efficiency than Intel-based systems.  Seems like the remaining active enterprise system vendors, mainly IBM and Oracle, want to present their systems as beating Intel. Both companies, DancingDinosaur suspects, will discover that beating Intel by a few gigahertz or microseconds or nanoseconds won’t generate the desired stream of new customers ready to ditch the slower Intel systems they have used for, by now, decades.  Oracle and IBM will have to deliver something substantially more tangible and distinctive.

For the z14, it should be pervasive encryption, which reduces or eliminates data compliance audit burdens and the corresponding fear of costly data breaches. Don‘t we all wish Equifax had encrypted its data, unless yours somehow are NOT among the 140 million or so compromised records. DancingDinosaur covered the Z launch in July. Not surprisingly, Oracle never mentioned the z14 or IBM in its M8 announcement or data sheet.

What Oracle did say was this: the Oracle SuperCluster M8 engineered systems and SPARC T8 and M8 servers, are designed to seamlessly integrate with existing infrastructures and include fully integrated virtualization and management for private cloud. All existing commercial and custom applications will run on SPARC M8 systems unchanged with new levels of performance, security capabilities, and availability. The SPARC M8 processor with Software in Silicon v2 extends the industry’s first Silicon Secured Memory, which provides always-on hardware-based memory protection for advanced intrusion protection and end-to-end encryption and Data Analytics Accelerators (DAX) with open API’s for breakthrough performance and efficiency running Database analytics and Java streams processing. Oracle Cloud SPARC Dedicated Compute service will also be updated with the SPARC M8 processor.

It almost sounds like a weak parody of IBM’s July z14 announcement here. The following is part of what IBM wrote: Pervasively encrypts data, all the time at any scale. Addresses global data breach epidemic; helps automate compliance for EU General Data Protection Regulation, Federal Reserve, and other emerging regulations. Encrypts data 18x faster than compared x86 platforms, at 5 percent of the cost.

Not sure what DancingDinosaur was expecting Oracle to say. Maybe some recognition that there is another enterprise server out there making similar promises and claims. Certainly it could have benchmarked its own database against the z13 if not the z14. DancingDinosaur may be a mainframe bigot but is no true blue fan of IBM.

What Oracle did say seemed somewhat thin and x86-obsessed:

  • Database: Engineered to run Oracle Database faster than any other microprocessor, SPARC M8 delivers 2x faster OLTP performance per core than x86 and 1.4x faster than M7 microprocessors, as well as up to 7x faster database analytics than x86.
  • Java: SPARC M8 delivers 2x better Java performance than x86 and 1.3x better than M7 microprocessors. DAX v2 produces 8x more efficient Java streams processing, improving overall application performance.
  • In Memory Analytics: Innovative new processor delivers 7x Queries per Minute (QPM)/core than x86 for database analytics.

But one thing Oracle did say appears truly noteworthy for a computer vendor: Oracle’s long history of binary compatibility across processor generations continues with M8, providing an upgrade path for customers when they are ready. Oracle has also publicly committed to supporting Solaris until at least 2034. DancingDinosaur expects to retire in a few years. Hope to not be reading Oracle or IBM press releases then.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Syncsort Finds New Corporate Home and Friend

September 8, 2017

Centerbridge Partners, L.P. a private investment firm, completed the $1.26 billion acquisitions of enterprise software providers Syncsort Incorporated and Vision Solutions, Inc. from affiliates of Clearlake Capital Group, L.P. Clearlake, which acquired Syncsort in 2015 and Vision in 2016, will retain a minority ownership stake in the combined company.

Syncsort is a provider of enterprise software and a player in Big Iron to Big Data solutions. DancingDinosaur has covered it here and here. According to the company, customers in more than 85 countries rely on Syncsort to move and transform mission-critical data and workloads. Vision Solutions provides business resilience tools addressing high availability, disaster recovery, migration, and data sharing for IBM Power Systems.

The company apparently hasn’t suffered from being passed between owners. Syncsort has been active in tech acquisitions for the past two years as it builds its data transformation footprint. Just a couple of weeks ago, it acquired Metron, a provider of cross-platform capacity management software, services. Metron’s signature athene solution delivers trend-based forecasting, capacity modeling, and planning capabilities that enable enterprises to optimize their data infrastructure to improve performance and control costs on premise or in the cloud.

This acquisition is the first since the announcement that Syncsort and Vision Solutions are combining, adding expertise and proven leadership in IBMi and AIX Power Systems platforms and to reinforce its ‘Big Iron to big data’ focus. Syncsort has also long established player in the mainframe business. Its Big Iron to Big Data promises to be a fast-growing market segment comprised of solutions that optimize traditional data systems and deliver mission-critical data from these systems to next-generation analytic environments using innovative Big Data technologies. Metron’s solutions and expertise is expected to contribute to the company’s data infrastructure optimization portfolio.

Syncsort has been on a roll since late in 2016 when, backed by Clearlake, it acquired Trillium Software, a global provider of data quality solutions. The acquisition of Trillium was the largest in Syncsort’s history then, and brings together data quality and data integration technology for enterprise environments. The combination of Syncsort and Trillium, according to the company, enables enterprises to harness all their valuable data assets for greater business insights, applying high-performance and scalable data movement, transformation, profiling, and quality across traditional data management technology stacks as well as Hadoop and cloud environments.

Specifically, Syncsort and Trillium both have a substantial number of large enterprise customers seeking to generate new insights by combining traditional corporate data with diverse information sources from mobile, online, social, and the Internet of Things. Syncsort expects these organizations to continue to rely heavily on next-generation analytic capabilities, creating a growing need for its best-in-class data integration and quality solutions to make their Big Data initiatives successful. Together, Syncsort and Trillium will continue to focus on providing customers with these capabilities for traditional environments, while leading the industry in delivering them for Hadoop and Spark too.

Earlier this year Syncsort integrated its own Big Data integration solution, DMX-h, with Cloudera Director, enabling organizations to easily deploy DMX-h along with Cloudera Enterprise on Amazon Web Services, Microsoft Azure, or Google Cloud. By deploying DMX-h with CDH, organizations can quickly pull data into new, ready-to-work clusters in the cloud—accelerating the time to capture cloud benefits, including cost savings and Data-as-a-Service (DaaS) delivery.

“As organizations liberate data from across the enterprise and deliver it into the cloud, they are looking for a self-service, elastic experience that’s easy to deploy and manage. This is a requirement for a variety of use cases – from data archiving to analytics that combine data originating in the cloud with on premise reference data,” said Tendü Yoğurtçu, Chief Technology Officer.

“By integrating DMX-h with Cloudera Director,” Yoğurtçu continued, “DMX-h is instantly available and ready to put enterprise data to work in newly activated cloud clusters.”

Syncsort DMX-h pulls enterprise data into Hadoop in the cloud and prepares that data for business workloads using native Hadoop frameworks, Apache Spark, or MapReduce, effectively enabling IT to achieve time-to-value goals and quickly deliver business insights.

It is always encouraging to see the mainframe eco-system continue to thrive. IBM’s own performance over the past few years has been anything but encouraging.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

New Software Pricing for IBM Z

July 27, 2017

One of the often overlooked benefits of the introduction of a new mainframe like the Z is cost savings. Even though the machine may cost more, the cost of the performance and capabilities it delivers typically cost less on a per unit basis. In the case of the new Z, it’s not just a modest drop in price/performance. With the new Z, IBM announced, three new Container Pricing models for IBM Z, providing greatly simplified software pricing that promises flexible deployment with competitive economics vs. public clouds and on-premises x86 environments.

Working on the new IBM Z

Here are the three biggest software pricing changes:

  • Predictable and Transparent Container Pricing—providing organizations greatly simplified software pricing that combines flexible deployment with competitive economics vs. public clouds and on-premises x86 environments. To IBM, a container can be any address space, however large and small. You can have any number of containers. “Container Pricing provides collocated workloads with line-of-sight pricing to a solution,” explained Ray Jones, VP, IBM Z Software and Hybrid Cloud. With container pricing, Jones continued, “the client determines where to deploy using WLM, z/OS and SCRT do the rest.”
  • Application dev and test—highly competitive stand-alone pricing for z/OS based development and test workloads. Organizations can increase their DevTest capacity up to 3 times at no additional MLC cost. This will be based on the organization’s existing DevTest workload size. Or a company can choose the multiplier it wants and set the reference point for both MLC and OTC software.
  • Payment systems pricing are based on the business metric of payments volume a bank processes, not the available capacity. This gives organizations much greater flexibility to innovate affordably in a competitive environment, particularly in the fast-growing Instant Payment segment. To use the new per payment pricing, Jones added, up front licensing of IBM Financial Transaction Manager (FTM) software is required.

The Container Pricing options are designed to give clients the predictability and transparency they require for their business. The pricing models are scalable both within and across logical partitions (LPARs) and deliver greatly enhanced metering, capping and billing capabilities. Container Pricing for IBM Z is planned to be available by year-end 2017 and enabled in z/OS V2.2 and z/OS V2.3

Jones introduced the software discounts by reiterating that this was focused on software container pricing for IBM z and promised that there will be a technology software benefit with z14 as there was with the z13. IBM, he added, will offer a way to migrate to the new pricing, “This is a beginning of a new beginning. Clearly as we go forward we want to expand what’s applicable to container pricing.” His clear implication: IBM is intent on expanding the discounting it started when, several years ago, it introduced discounts for mobile transactions running on the z, which was driving up monthly software cost averages as mobile transaction volume began to skyrocket.

To understand the latest changes you need to appreciate what IBM means by container. This is not just about Docker containers. A container to IBM simply is an address space.  An organization can have multiple containers in a logical partition and have as many containers as it wants and change the size of containers as needed.

The fundamental advantage of IBM’s container pricing is that it enables co-location of workloads to get improved performance and remove latency, thus IBM’s repeated references to line-of-sight pricing. In short, this is about MLC (4hr) pricing. The new pricing eliminates what goes on in container from consideration. The price of container is just that; the price of the container. It won’t impact the 4hr rolling average, resulting in very predictable pricing.

The benefits are straightforward: simplified pricing for qualified solutions and allowance to deploy in the best way. And IBM can price competitively to the customer’s solution; in effect solution-specific pricing. When combined with the new price metric-payments pricing IBM trying to put together a competitive cost/price story. Of course, it is all predicated on the actual prices IBM finally publishes.  Let’s hope they are as competitive as IBM implies.

DancingDinosaur never passes up an opportunity to flog IBM for overpricing its systems and services. From discussions with Jones and other IBM during the pre-launch briefings managers the company may finally understand the need to make the mainframe or z or Z or whatever IBM calls it price-competitive on an operational level today. Low TCO or low cost of IOPS or low cost of QoS is not the same.

This is especially important now. Managers everywhere appear to be waking up to the need transform their mainframe-based businesses, at least in part, by becoming competitive digital businesses. DancingDinosaur never imagined that he would post something referencing the mainframe as a cost-competitive system able to rival x86 systems not just on quality of service but on cost. With the IBM Z the company is talking about competing with an aggressive cost strategy. It’s up to you, paying customers, to force them to deliver.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

New IBM Z Redefines Mainframe and Security and Cloud

July 19, 2017

By now you have certainly heard of IBM’s latest mainframe, the long-awaited z14, which the company refers to as Z. An announcement of a new mainframe usually doesn’t attract much notice, but maybe this announcement should. Even if you are not a mainframe fan this machine offers a solution that helps everybody—pervasive encryption of all data with no impact on operations or performance and with no need to take much action on your part, except to plug the machine in.

10-core z14 chip

At a time when organizations of all types and in every market segment are under attack from hackers, ransomware, data breaches, and more all data center managers should welcome automatic pervasive encryption. Yet 96% don’t. Of the 9 billion records breached since 2013 only 4% were encrypted! You already know why: encryption is a chore, impacts staff, slows system performance, costs money, and more. You know all the complaints better than DancingDinosaur.

The z14 changes everything from this point going forward. IBM has committed a 4x increase in silicon dedicated to cryptographic algorithms for pervasive encryption. In effect the Z encrypts all data associated with an entire application, cloud service, and database, in flight and at rest, automatically. This amounts to bulk encryption at cloud scale made possible by a massive 7x increase in cryptographic performance over the z13. This is 18x faster than comparable x86 systems and at just five percent of the cost of x86-based solutions.

In truth, it’s better than this. You get this encryption automatically virtually for free. IBM insists it will deliver the z14 at the same price/performance of the z13 or less. The encryption is built into the cost of silicon out of the box. DancingDinosaur has not seen any specific prices yet but you are welcome to scream if IBM doesn’t come through.

You immediately get rid of all the encryption headaches; you don’t have to classify data, manage encryption, or do any of the other chores typically associated with encryption. You just get it, automatically. The z14 also relieves you from managing encryption keys; only IBM Z can protect millions of keys (as well as the process of accessing, generating and recycling them) in tamper-responsive hardware that causes keys to be invalidated at any sign of intrusion and then be restored in safety.

When it comes to security, the z14 truly is a game changer. And it finally will get compliance auditors off your back once they realize how extensive z14 protection is.

IBM downplayed speeds and feeds with the z13 but they’re back with the z14. Specifically, a 5.2 GHz (versus 5.0 GHz IBM z13) is still a bit short of z12, which ran 5.5 GHz. But as with the z13, IBM makes up for it with more memory. The z14 can handle 32 TB of memory. It also includes up to 170 configurable cores (up to 10 per chip) for a total of 1832 MIPS. The L1 and L2 cache is on the core.  The L3 cache also sits on chip and is shared by on-chip cores, and communicates with cores, memory, I/O, and system controller as a single chip module.

Maybe not the richest specs but impressive nonetheless. IBM has been tweaking the box from top to bottom to boost performance. And all the while it will take over end-to-end encryption automatically, including encrypted APIs. Surprisingly, IBM has said nothing about Z’s power consumption but constantly on encrpytion/decryption has to draw more power than, say, the z13. Am waiting to hear what IBM has to say.

This is not just for mainframe jocks. Optimized IBM z/OS Connect technologies make it straightforward for cloud developers to discover and call any IBM Z application or data from a cloud service, or for Z developers to call any cloud service. IBM Z now allows organizations to encrypt these APIs and still run nearly 3x faster than alternatives based on comparable x86 systems.  These speeds and feeds have all been thoroughly documented and detailed at the bottom of the IBM Z press release here.

Will the z14 return the mainframe to positive revenue?  Probably for a few quarters, maybe more if non-mainframe shops want the clear payback of pervasive encryption, although it won’t be an easy transition for them without IBM assistance and incentives.

Next week DancingDinosaur will take up the Z’s three new container pricing models intended to make the Z competitive with public clouds and on-premises x86 environments.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Get a Next-Gen Datacenter with IBM-Nutanix POWER8 System

July 14, 2017

First announced by IBM on May 16 here, this solution, driven by client demand for a simplified hyperconverged—combined server, network, storage, hardware, software—infrastructure, is designed for data-intensive enterprise workloads.  Aimed for companies increasingly looking for the ease of deployment, use, and management that hyperconverged solutions promise. It is being offered as an integrated hardware and software offering in order to deliver on that expectation.

Music made with IBM servers, storage, and infrastructure

IBM’s new POWER8 hyperconverged solutions enable a public cloud-like experience through on-premises infrastructure with top virtualization and automation capabilities combined with Nutanix’s public and on-premises cloud capabilities. They provide a combination of reliable storage, fast networks, scalability and extremely powerful computing in modular, scalable, manageable building blocks that can be scaled simply by adding nodes when needed.

Over time, IBM suggests a roadmap of offerings that will roll out as more configurations are needed to satisfy client demand and as feature and function are brought into both the IBM Cognitive Systems portfolio and the Nutanix portfolio. Full integration is key to the value proposition of this offering so more roadmap options will be delivered as soon as feature function is delivered and integration testing can be completed.

Here are three immediate things you might do with these systems:

  1. Mission-critical workloads, such as databases, large data warehouses, web infrastructure, and mainstream enterprise apps
  2. Cloud native workloads, including full stack open source middleware, enterprise databases
    and containers
  3. Next generation cognitive workloads, including big data, machine learning, and AI

Note, however, the change in IBM’s pricing strategy. The products will be priced with the goal to remain neutral on total cost of acquisition (TCA) to comparable offerings on x86. In short, IBM promises to be competitive with comparable x86 systems in terms of TCA. This is a significant deviation from IBM’s traditional pricing, but as we have started to see already and will continue to see going forward IBM clearly is ready to play pricing flexibility to win the deals on products it wants to push.

IBM envisions the new hyperconverged systems to bring data-intensive enterprise workloads like EDB Postgres, MongoDB and WebSphere into a simple-to-manage, on-premises cloud environment. Running these complex workloads on IBM Hyperconverged Nutanix POWER8 system can help an enterprise quickly and easily deploy open source databases and web-serving applications in the data center without the complexity of setting up all of the underlying infrastructure plumbing and wrestling with hardware-software integration.

And maybe more to IBM’s ultimate aim, these operational data stores may become the foundational building blocks enterprises will use to build a data center capable of taking on cognitive workloads. These ever-advancing workloads in advanced analytics, machine learning and AI will require the enterprise to seamlessly tap into data already housed on premises. Soon expect IBM to bring new offerings to market through an entire family of hyperconverged systems that will be designed to simply and easily deploy and scale a cognitive cloud infrastructure environment.

Currently, IBM offers two systems: the IBM CS821 and IBM CS822. These servers are the industry’s first hyperconverged solutions that marry Nutanix’s one-click software simplicity and scalability with the proven performance of the IBM POWER architecture, which is designed specifically for data-intensive workloads. The IBM CS822 (the larger of the two offerings) sports 22 POWER8 processor cores. That’s 176 compute threads, with up to 512 GB of memory and 15.36 TB of flash storage in a compact server that meshes seamlessly with simple Nutanix Prism management.

This server runs Nutanix Acropolis with AHV and little endian Linux. If IBM honors its stated pricing policy promise, the cost should be competitive on the total cost of acquisition for comparable offerings on x86. DancingDinosaur is not a lawyer (to his mother’s disappointment), but it looks like there is considerable wiggle room in this promise. IBM Hyperconverged-Nutanix Systems will be released for general availability in Q3 2017. Specific timelines, models, and supported server configurations will be announced at the time of availability.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Latest Compuware Tools Bring Mainframe and DevOps Together

July 7, 2017

At the end of June Compuware announced the integration of Topaz for Total Test, an automated unit testing tool for COBOL, with Jenkins, SonarQube and Compuware ISPW. Together, the technologies enable enterprises nimbly, easily and efficiently update their core mainframe applications in response to ever-changing business requirements.  This continues the company’s ongoing quarterly releases of updates and modernization of mainframe tools.

The latest enable mainframe legacy technologies to participate in integrated modern DevOps. They allow enterprise IT to better orchestrate changes to mainframe systems of record with changes to systems of engagement—a significant benefit given the fact that customer-facing digital services often rely on code running across multiple platforms, legacy and distributed.

Compuware Topaz for Total Test

The days when a mainframe shop can get by with leisurely updates of their systems, especially their business critical applications, are long gone.  Organizations need to modernize and integrate their tools to deliver the kind of fast response attributed to DevOps.

Of course, successful DevOps, whether mainframe or distributed, is less a matter of tools than of culture, communication, and process.  Still, there’s no doubt that modern, integrated, and context-aware tools along with automation help by speeding the process and reducing mistakes.

Topaz for Total Test appears to cover all the tool bases. It brings together automated unit testing for COBOL with Jenkins, SonarQube, and Compuware ISPW. Jenkins is an open-source continuous integration software tool written in the Java for testing and reporting on isolated changes in a larger code base in real time. The real time aspect is critical for DevOps, where speed counts. The software enables developers to find and solve defects in a code base rapidly and to automate testing of their builds. SonarQube (formerly Sonar[1]) is an open source platform for continuous inspection of code quality. Again, error elimination counts.

The problem, as Compuware sees it, comes from mainframe shops’ historical inability to update their business-critical COBOL applications fast enough due to antiquated tools, excessive dependence on specialized expertise, and risk concerns. All these combine to produce long delays in updating code.

The addition of Jenkins and SonarQube along with Compuware’s ISPW source code management and deployment produce a pretty complete DevOps package for mainframes. In addition, Compuware strengthened support for DB2. That support entails new stubbing for DB2 databases, which allows developers to run unit tests without requiring an active connection to a live DB2 database. While Topaz for Total Test can be used to test code that processes all types of mainframe data, its stubbing capability for DB2 but also VSAM and QSAM data types. This makes it easier to create repeatable tests fast. Data stubs are created automatically and do not require re-compiling.

Although much of the world’s business activity still revolves in one way or another around the mainframe, many mainframe shops struggle when it comes to updating those applications to reflect rapidly changing business demands. Typically, they are hampered by manual development and testing processes; ongoing loss of specialized COBOL programming knowledge; and the fear of introducing even the slightest defect into core mainframe systems of record, notes Compuware.

And it gets worse. “Given the abject failure of re-platforming initiatives, large enterprises hoping to avoid digital irrelevance must aggressively modernize their mainframe DevOps practices,” said Rich Ptak of IT analyst firm Ptak Associates in Compuware’s Topaz for Total Test announcement. “Key to the modernization and ‘de-legacing’ of mainframe applications is the adoption of unit testing for COBOL code that is equivalent to and well-integrated with unit testing as practiced across the rest of the enterprise codebase.”

Compuware Topaz for Total Test transforms mainframe application development by automatically breaking COBOL code down into units and creating tests for those logical units. Developers at all skill levels—not just mainframe cowboys but preferably those with distributed and open system skills or even systems novices—can quickly and easily perform unit testing on COBOL code just as they do in Java, PHP and other popular programming languages. In fact, Topaz is actually more advanced than typical Java tools, because it requires no coding and automatically generates default unit test result assertions for developers.  So yes, novices are welcome.

With the recently released integrations and enhancements, Compuware has now delivered mainframe innovations for eleven consecutive quarters. Few mainframe shops even try to do this, not even IBM. This reflects Compuware’s commitment to improving innovation throughput and quality using the latest Agile and DevOps methods.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Puts Open DBaaS on IBM OpenPOWER LC Servers

June 15, 2017

Sometimes IBM seems to be thrashing around looking for anything hot that’s selling, and the various NoSQL databases definitely are hot. The interest is driven by DevOps, cloud, and demand for apps fast.

A month or so ago the company took its Power LC server platform to the OpenPOWER Developer Conference in San Francisco where they pitched Database-as-a-Service (DBaaS) and a price-performance guarantee: OpenPOWER LC servers designed specifically for Big Data to deliver a 2.0x price-performance advantage over x86 for MongoDB and 1.8x for EDB PostgreSQL 9.5 guaranteed. With organizations seeking any performance advantage, these gains matter.

There are enough caveats that IBM will almost never be called to deliver on the guarantee. So, don’t expect to cash in on this very quickly. As IBM says in the miles of fine print: the company will provide additional performance optimization and tuning services consistent with IBM Best Practices, at no charge.  But the guarantee sounds intriguing. If you try it, please let DancingDinosaur know how it works out.

IBM Power System S822LC for Big Data

BTW, IBM published the price for the S822LC for big data as starting at $6,399.00 USD. Price includes shipping. Linux OS, however, comes for an additional charge.

Surprisingly, IBM is not aiming this primarily to the IBM Cloud. Rather, the company is targeting the private cloud, the on-premises local version. Its Open DBaaS toolkit, according to IBM, provides enterprise clients with a turnkey private cloud solution that pre-integrates an Open Source DB image library, OpenStack-based private cloud, and DBaaS software packages with hardware (servers/storage/network switches/rack) and a single source of support to enable a DBaaS self-service portal for enterprise developers and LOB users to provision MongoDB, Postgres, and others in minutes. But since it is built on OpenStack, it also supports hybrid cloud integration with IBM Cloud offerings via OpenStack APIs.

In terms of cost it seems remarkably reasonable. It comes in four reference configurations. The Starter configuration is ~$80k (US list price) and includes 3 Power 822LC servers, pair of network switches, rack, DBaaS Toolkit software, and IBM Lab Services. Other configurations include Entry, Cloud Scale, and Performance configurations that have been specified for additional compute, storage, and OpenStack control plane nodes along with high-capacity JBOD storage drawers. To make this even easier, each configuration can be customized to meet user requirements. Organizations also can provide their own racks and/or network switches.

Furthermore, the Power 822LC and Power 821LC form the key building blocks for the compute, storage and OpenStack control plane nodes. As a bonus, however, IBM includes the new 11-core Power 822LC, which provides an additional 10-15% performance boost over the 10-core Power 822LC for the same price.

This is a package deal, at least if you want the best price and to deploy it fast. “As the need for new applications to be delivered faster than ever increases in a digital world, developers are turning to modern software development models including DevOps, as-a-Service, and self-service to increase the volume, velocity and variety of business applications,” said Terri Virnig, VP, Power Ecosystem and Strategy at IBM. Open Platform for DBaaS on IBM in the announcement. Power Systems DBaaS package  includes:

  • A self-service portal for end users to deploy their choice of the most popular open source community databases including MongoDB, PostgreSQL, MySQL, MariaDB, Redis, Neo4j and Apache Cassandra deployable in minutes
  • An elastic cloud infrastructure for a highly scalable, automated, economical, and reliable open platform for on-premises, private cloud delivery of DBaaS
  • A disk image builder tool for organizations that want to build and deploy their own custom databases to the database image library

An open source, cloud-oriented operations manager with dashboards and tools will help you visualize, control, monitor, and analyze the physical and virtual resources. A turnkey, engineered solution comprised of compute, block and archive storage servers, JBOD disk drawers, OpenStack control plane nodes, and network switches pre-integrated with the open source DBaaS toolkit is available through GitHub here.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Syncsort Drives zSystem and Distributed Data Integration

June 8, 2017

IBM appears to be so busy pursuing its strategic imperatives—security, blockchain, quantum computing, and cognitive computing—that it seems to have forgotten the daily activities that make up the bread-and-butter of mainframe data centers. Stepping up to fill the gap have been mainframe ISVs like Compuware, Syncsort, Data Kinetics, and a few others.

IBM’s Project DataWorks taps into unstructured data often missed

IBM hasn’t completely ignored this need. For instance, Project DataWorks uses Watson Analytics and natural language processing to analyze and create complex visualizations. Syncsort, on the other hand, latched onto open Apache technologies, starting in the fall of 2015. Back then it introduced a set of tools to facilitate data integration through Apache Kafka and Apache Spark, two of the most active Big Data open source projects for handling real-time, large-scale data processing, feeds, and analytics.

Syncsort’s primary integration vehicle then revolved around the Intelligent Execution capabilities of its DMX data integration product suite with Apache Spark. Intelligent Execution allows users to visually design data transformations once and then run them anywhere – across Hadoop, MapReduce, Spark, Linux, Windows, or Unix, both on premise or in the cloud.

Since then Syncsort, in March, announced another big data integration solution. This time its DMX-h, is now integrated with Cloudera Director, enabling organizations to easily deploy DMX-h along with Cloudera Enterprise on Amazon Web Services, Microsoft Azure, or Google Cloud. By deploying DMX-h with CDH, Syncsort explained, organizations can quickly pull data into new, ready-to-work clusters in the cloud. This accelerates how quickly they can take advantage of big data cloud benefits, including cost savings and Data-as-a-Service (DaaS) delivery.

A month before that, this past February, Syncsort introduced new enhancements in its Big Data integration solution by again deploying DMX-h to deliver integrated workflow capabilities and Spark 2.0 integration, which simplifies Hadoop and Spark application development, effectively enabling mainframe data centers to extract maximum value from their data assets.

In addition, Syncsort brought new integrated workflow capabilities and Spark 2.0 integration to simplify Hadoop and Spark application development. It lets data centers tap value from their enterprise data assets regardless of where it resides, whether on the mainframe, in distributed systems, or in the cloud.

Syncsort’s new integrated workflow capability also gives organizations a simpler, more flexible way to create and manage their data pipelines. This is done through the company’s design-once, deploy-anywhere architecture with support for Apache Spark 2.0, which makes it easy for organizations to take advantage of the benefits of Spark 2.0 and integrated workflow without spending time and resources redeveloping their jobs.

Assembling such an end-to-end data pipeline can be time-consuming and complicated, with various workloads executed on multiple platforms, all of which need to be orchestrated and kept up to date. Delays in such complicated development, however, can prevent organizations from getting the timely insights they need for effective decision-making.

Enter Syncsort’s Integrated Workflow, which helps organizations manage various workloads, such as batch ETL on large repositories of historical data. This can be done by referencing business rules during data ingest in a single workflow, in effect simplifying and speeding development of the entire data pipeline, from accessing critical enterprise data, to transforming that data, and ultimately analyzing it for business insights.

Finally, in October 2016 Syncsort announced new capabilities in its Ironstream software that allows organizations to access and integrate mainframe log data in real-time to Splunk IT Service Intelligence (ITSI). Further, the integration of Ironstream and Compuware’s Application Audit software deliver the audit data to Splunk Enterprise Security (ES) for Security Information and Event Management (SIEM). This integration improves an organization’s ability to detect threats against critical mainframe data, correlate them with related information and events, and satisfy compliance requirements.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 


%d bloggers like this: