Posts Tagged ‘Gen-Z’

LinuxONE is a Bargain

September 21, 2018

LinuxONE may be the best bargain you’ll ever find this season, and you don’t have to wait until Santa brings it down your chimney. Think instead about transformation and digital disruption.  Do you want to be in business in 3 years? That is the basic question that faces every organization that exists today, writes Kat Lind, Chief Systems Engineer, Solitaire Interglobal Ltd, author of the white paper Scaling the Digital Mountain.

Then there is the Robert Frances Group’s  Top 10 Reasons to Choose LinuxONE. DancingDinosaur won’t rehash all ten. Instead, let’s selectively pick a few, starting with the first one, Least Risk Solution, which pretty much encapsulates the LinuxONE story. It reduces business, compliance, financial, operations, and project risks. Its availability, disaster recovery, scalability and security features minimize the business and financial exposures. In addition to pervasive encryption it offers a range of security capabilities often overlooked or downplayed including; logical partition (LPAR) isolation, and secure containers.

Since it is a z dedicated to Linux, unlike the z13 or z14 z/OS machines that also run Linux but not as easily or efficiently,  As the Robert Frances Group noted: it also handles Java, Python; and other languages and tools like Hadoop, Docker, other containers, Chef, Puppet, KVM, multiple Linux distributions, open source, and more.  It also can be used in a traditional legacy environment or used as the platform of choice for cloud hosting. LinuxONE supports tools that enable DevOps similar to those on x86 servers.

And LinuxONE delivers world class performance. As the Robert Frances Group puts it: LinuxONE is capable of driving processor utilization to virtually 100% without a latency impact, performance instabilities, or performance penalties. In addition, LinuxONE uses the fastest commercially available processors, running at 5.2GHz, offloads I/O to separate processors enabling the main processors to concentrate on application workloads, and enables much more data in memory, up to 32TB.

In addition, you can run thousands of virtual machine instances on a single LinuxONE server. The cost benefit of this is astounding compared to managing the equivalent number of x86 servers. The added labor cost alone would break your budget.

In terms of security, LinuxONE is a no brainer. Adds Lind from Solitaire:  Failure in this area erodes an organization’s reputation faster than any other factor. The impact of breaches on customer confidence and follow-on sales has been tracked, and an analysis of that data shows that after a significant incursion, the average customer fall-off exceeds 41% accompanied by a long-running drop in revenues. Recovery involves a significant outlay of service, equipment, and personnel expenses to reestablish a trusted position, as much as 18.6x what it cost to get the customer initially. And Lind doesn’t even begin to mention the impact when the compliance regulators and lawyers start piling on. Anything but the most minor security breach will put you out of business faster than the three years Lind asked at the top of this piece.

But all the above is just talking in terms of conventional data center thinking. DancingDinosaur has put his children through college doing TCO studies around these issues. Lind now turns to something mainframe data centers are just beginning to think about; digital disruption. The strategy and challenges of successfully navigating the chaos of cyberspace translates into a need to have information on both business and security and how they interact.

Digital business and security go hand in hand, so any analysis has to include extensive correlation between the two. Using data from volumes of customer experience responses, IT operational details, business performance, and security, Solitaire examined the positioning of IBM LinuxONE in the digital business market. The results of that examination boil down into three: security, agility, and cost. These areas incorporate the primary objectives that organizations operating in cyberspace today regard as the most relevant. And guess who wins any comparative platform analysis, Lind concludes: LinuxONE.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com.

 

 

 

 

 

 

 

OpenCAPI, Gen-Z, CCIX Initiate a New Computing Era

October 20, 2016

The next generation data center will be a more open, cooperative, and faster place judging from the remarkably similar makeup of three open consortia, OpenCAPI , Gen-Z, and CCIX. CCIX allows processors based on different instruction set architectures to extend their cache coherency to accelerators, interconnect, and I/O.

OpenCAPI provides a way to attach accelerators and I/O devices with coherence and virtual addressing to eliminate software inefficiency associated with the traditional I/O subsystem, and to attach advanced memory technologies.  The focus of OpenCAPI is on attached devices primarily within a server. Gen-Z, announced around the same time, is a new data access technology that primarily enables read and write operations among disaggregated memory and storage.

open-power-rethink-datacenter

Rethink the Datacenter

It’s quite likely that your next data center will use all three. The OpenCAPI group includes AMD, Dell EMC, Google, Hewlett Packard Enterprise, IBM, Mellanox Technologies, Micron, NVIDIA and Xilinx. Their new specification promises to enable up to 10X faster server performance with the first products expected in the second half of 2017.

The Gen-Z consortium consists Advanced Micro Devices, Broadcom, Huawei Technologies, Red Hat, Micron, Xilinx, Samsung, IBM, and Cray. Other founding members are Cavium, IDT, Mellanox Technologies, Microsemi, Seagate, SK Hynix, and Western Digital. They plan to develop a scalable computing interconnect and protocol that will enable systems to keep with the rapidly rising tide of data that is being generated and that needs to be analyzed. This will require the rapid movement of high volumes of data between memory and storage.

The CCIX initial members include Amphenol Corp., Arteris Inc., Avery Design Systems, Atos, Cadence Design Systems, Inc., Cavium, Inc., Integrated Device Technology, Inc., Keysight Technologies, Inc., Micron Technology, Inc., NetSpeed Systems, Red Hat Inc., Synopsys, Inc., Teledyne LeCroy, Texas Instruments, and TSMC.

The basic problem all three address revolves around how to make the volume and variety of new hardware forge fast communications and work together. In effect each group, from its own particular perspective, aims to boost the performance and interoperability of data center servers, devices, and components engaged in generating and handling myriad data and tasked with analyzing large amounts of that data. This will only be compounded as IoT, blockchain, and cognitive computing ramp up.

To a large extent, this results from the inability of Moore’s Law to continue to double the number of processors indefinitely. Future advances must rely on different sorts of hardware tweaks and designs to deliver greater price/performance.

Then in Aug. 2016 IBM announced a related chip breakthrough.  It unveiled the industry’s first 7 nm chip that could hold more than 20 billion tiny switches or transistors for improved computing power. The new chips could help meet demands of future cloud computing and Big Data systems, cognitive computing, mobile products and other emerging technologies, according to IBM.

Most chips today in servers and other devices use microprocessors between 14 and 22 nanometers (nm). The 7nm technology represents at least a 50 percent power improvement. IBM intends to apply the new chips to analyze DNA, viruses, and exosomes. IBM expects to test this lab-on-a-chip technology starting with prostate cancer.

The point of this digression into chips and Moore’s Law is to suggest the need for tools and interfaces like Open CAPI, Gen-Z, and CCIX. As the use cases for ultra fast data analytics expands along with the expected proliferation of devices speed becomes critical. How long do you want to wait for an analysis of your prostate or breast cells? If the cells are dear to you, every nanosecond matters.

For instance, OpenCAPI provides an open, high-speed pathway for different types of technology – advanced memory, accelerators, networking and storage – to more tightly integrate their functions within servers. This data-centric approach to server design puts the compute power closer to the data and removes inefficiencies in traditional system architectures to help eliminate system bottlenecks that significantly improve server performance.  In some cases OpenCAPI enables system designers to access memory with sub-500 nanosecond latency.

IBM plans to introduce POWER9-based servers that leverage the OpenCAPI specification in the second half of 2017. Similarly, expect other members of OpenPOWER Foundation to introduce OpenCAPI enabled products in the same time frame. In addition, Google and Rackspace’s new server under development, codenamed Zaius and announced at the OpenPOWER Summit in San Jose, will leverage POWER9 processor technology and plans to provide the OpenCAPI interface in its design. Also, Mellanox plans to enable the new specification capabilities in its future products and Xilinx plans to support OpenCAPI enabled FPGAs

As reported at the Gen-Z announcement, “The formation of these new consortia (CCIX, OpenCAPI, and Gen-Z), backed by more than 30 industry-leading global companies, supports the premise that the datacenter of the future will require open standards. We look forward to collaborating with CCIX and OpenCAPI as this new ecosystem takes shape,” said Kurtis Bowman, Gen-Z Consortium president. Welcome to the 7nm computing era.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghostwriter. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 


%d bloggers like this: