Posts Tagged ‘IBM Flex’

IBM Changes the Economics of Cloud Storage

March 31, 2017

Storage tiering used to be simple: active data went to your best high performance storage, inactive data went to low cost archival storage, and cloud storage filled in for one or whatever else was needed. Unfortunately, today’s emphasis on continuous data analytics, near real-time predictive analytics, and now cognitive has complicated this picture and the corresponding economics of storage.

In response, last week IBM unveiled new additions to the IBM Cloud Object Storage family. The company is offering clients new choices for archival data and a new pricing model to more easily apply intelligence to unpredictable data patterns using analytics and cognitive tools.

Analytics drive new IBM cloud storage pricing

By now, line of business (LOB) managers, having been exhorted to leverage big data and analytics for years, are listening. More recently, the analytics drumbeat has expanded to include not just big data but sexy IoT, predictive analytics, machine learning, and finally cognitive science. The idea of keeping data around for a few months and parking it in a long term archive to never be looked at again until it is finally deleted permanently just isn’t happening as it was supposed to (if it ever did). The failure to permanently remove expired data can become costly from a storage standpoint as well as risky from an e-discovery standpoint.

IBM puts it this way: Businesses typically have to manage across three types of data workloads: “hot” for data that’s frequently accessed and used; “cool” for data that’s infrequently accessed and used; and “cold” for archival data. Cold storage is often defined as cheaper but slower. For example, if a business uses cold storage, it typically has to wait to retrieve and access that data, limiting the ability to rapidly derive analytical or cognitive insights. As a result, there is a tendency to store data in more expensive hot storage.

IBM’s new cloud storage offering, IBM Cloud Object Storage Flex (Flex), uses a “pay as you use” model of storage tiers potentially lowering the price by 53 percent compared to AWS S3 IA1 and 75 percent compared to Azure GRS Cool Tier.2 (See footnotes at the bottom of the IBM press release linked to above. However IBM is not publishing the actual Flex storage prices.) Flex, IBM’s new cloud storage service, promises simplified pricing for clients whose data usage patterns are difficult to predict. Flex promises organizations will benefit from the cost savings of cold storage for rarely accessed data, while maintaining high accessibility to all data.

Of course, you could just lower the cost of storage by permanently removing unneeded data.  Simply insist that the data owners specify an expiration date when you set up the storage initially. When the date arrives in 5, 10, 15 years automatically delete the data. At least that’s how I was taught eons ago. Of course storage costs orders of magnitude less now although storage volumes are orders of magnitude greater and near real-time analytics weren’t in the picture.

Without the actual rates for the different storage tiers you cannot determine how much Storage Flex may save you.  What it will do, however, is make it more convenient to perform analytics on archived data you might otherwise not bother with.  Expect this issue to come up increasingly as IoT ramps up and you are handling more data that doesn’t need hot storage beyond the first few minutes of its arrival.

Finally, the IBM Cloud Object Storage Cold Vault (Cold Vault) service gives clients access to cold storage data on the IBM Cloud and is intended to lead the category for cold data recovery times among its major competitors. Cold Vault joins its existing Standard and Vault tiers to complete a range of IBM cloud storage tiers that are available with expanded expertise and methods via Bluemix and through the IBM Bluemix Garages.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.


%d bloggers like this: