Posts Tagged ‘IoT’

IBM AI Toolset Focuses on 9 Industries

October 4, 2018

Recently, IBM introduced new AI solutions and services pre-trained for nine industries and professions including agriculture, customer service, human resources, supply chain, manufacturing, building management, automotive, marketing, and advertising. In each area the amount of data makes it more difficult for managers to keep up due to volume, velocity, and complexity of the data. The solutions generally utilize IBM’s Watson Data Platform.

For example, supply chain companies now should incorporate weather data, traffic reports, and even regulatory reports to provide a fuller picture of global supply issues. Similarly, industrial organizations are seeking to reduce product inspection resource requirements significantly through the use of visual and acoustic inspection capabilities, notes IBM.

Recent IBM research from its Institute for Business Value revealed that 82% of businesses are now considering AI deployments. Why? David Kenny, Senior Vice President, IBM Cognitive Solutions, explains: “As data flows continue to increase, people are overwhelmed by the amount of information [forcing them] to act on it every day, but luckily the information explosion coincides with another key technological advance; artificial intelligence (AI). In the 9 industries targeted by IBM, the company provides the industry-specific algorithms and system training required for making AI effective in each segment.

Let’s look at a selection of these industry segments starting with Customer Service where 77% of top performing organizations report seeing customer satisfaction as a key value driver for AI by giving customer service agents increased ability to respond quickly to questions and complex inquiries. It was first piloted at Deluxe Corporation, which saw improved response times and increased client satisfaction.

Human resources also could benefit from a ready-made AI solution. The average hiring manager flips through hundreds of applicants daily, notes IBM, spending approximately 6 seconds on each resume. This isn’t nearly enough time to make well-considered decisions. The new AI tool for HR analyzes the background of current top performing employees from diverse backgrounds and uses that data to help flag promising applicants.

In the area of industrial equipment, AI can be used to reduce product inspection resource requirements significantly by using AI-driven visual and acoustic inspection capabilities. At a time of intense global competition, manufacturers face a variety of issues that impact productivity including workforce attrition, skills-gaps, and rising raw material costs—all exacerbated by downstream defects and equipment downtime. By combining the Internet of Thing (IoT) and AI, IBM contends, manufacturers can stabilize production costs by pinpointing and predicting areas of loss; such as energy waste, equipment failures, and product quality issues.

In agriculture, farmers can use AI to gather data from multiple sources—weather, IoT-enabled tractors and irrigators, satellite imagery, and more—and see a single, overarching, predictive view of data as it relates to a farm. For the individual grower, IBM notes, this means support for making more informed decisions that help improve yield. Water, an increasingly scarce resource in large swaths of the world, including parts of the U.S., which have been experienced persistent droughts. Just remember the recent wildfires.

Subway hopes AI can increase in restaurant visits by leveraging the connection between weather and quick service (QSR) foot traffic to drive awareness of its $4.99 Foot long promotion via The Weather Channel mobile app. To build awareness and ultimately drive in-store visits to its restaurants Subway reported experiencing a 31% lift in store traffic and a 53% reduction in campaign waste due to AI.

DancingDinosaur had no opportunity to verify any results reported above. So always be skeptical of such results until they are verified to you.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog, and see more of his work at technologywriter.com.

Attract Young Techies to the Z

September 14, 2018

A decade ago DancingDinosaur was at a major IBM mainframe event and looked around at the analysts milling about and noticed all the gray hair and balding heads and very few women, and, worse, few appeared to be under 40, not exactly a crowd that would excite young male computer geeks. At the IBM introduction of the Z it had become even worse; more gray or balding heads, mine included, and none of the few Z professional female analysts that I knew under 40 were there at all.

millions of young eager to join the workforce (Image by © Reuters/CORBIS)

An IBM analyst relations person agreed, noting that she was under pressure from IBM to get some young techies at Z events.  Sounded like Mission Impossible to me. But my thinking has changed in the last couple of weeks. A couple of discussions with 20-something techies suggested that Zowe has the potential to be a game changer as far as young techies are concerned.

DancingDinosaur covered Zowe two weeks ago here. It represents the first open source framework for z/OS. As such it provides solutions for development and operations teams to securely manage, control, script, and develop on the mainframe like any other cloud platform.

Or, to put it another way, with Zowe IBM and partners CA Technologies and Rocket Software are enabling users to access z/OS using a new open-source framework. Zowe, more than anything before, brings together generations of systems that were not designed to handle global networks of sensors and devices. Now, decades since IBM brought Linux to the mainframe IBM, CA, and Rocket Software are introducing Zowe, as a new open-source software framework that bridges the divide between modern challenges like IoT and the mainframe.

Says Sean Grady, a young (under 30) software engineer at Rocket Software: Zowe to me is really cool, the first time I could have a sustained mainframe conversation with my peers. Their first reactions were really cynical, he recalls. Zowe changed that. “My peers know Linux tools really well,” he notes.

The mainframe is perceived as separate thing, something my peers couldn’t touch, he added. But Linux is something his peers know really well so through Zowe it has tools they know and like. Suddenly, the mainframe is no longer a separate, alien world but a familiar place. They can do the kind of work they like to do, in a way they like to do it by using familiar tools.

And they are well paid, much better than they can get coding here-and-gone mobile apps for some startup. Grady reports his starting offers ran up to $85k, not bad for a guy just out of college. And with a few years of experience now you can bet he’s doing a lot better than that.

The point of Zowe is to enable any developer, but especially new developers who don’t know or care about the mainframe, to manage, control, script, and develop on the mainframe like any other cloud platform. Additionally, Zowe allows teams to use the same familiar, industry-standard, open-source tools they already know to access mainframe resources and services.

The mainframe is older than many of the programmers IBM hopes Zowe will attract. But it opens new possibilities for next generation applications for mainframe shops desperately needing new mission-critical applications for which customers are clamoring. Already it appears ready to radically reduce the learning curve for the next generation.

Initial open source Zowe modules will include an extensible z/OS framework that provides new APIs and z/OS REST services to transform enterprise tools and DevOps processes that can incorporate new technology, languages, and workflows. It also will include a unifying workspace providing a browser-based desktop app container that can host both traditional and modern user experiences and is extensible via the latest web toolkits. The framework will also incorporate an interactive and scriptable command-line interface that enables new ways to integrate z/OS in cloud and distributed environments.

These modules represent just the start. More will be developed over time, enabling development teams to manage and develop on the mainframe like any other cloud platform. Additionally, the modules reduce risk and cost by allowing teams to use familiar, industry-standard, open source tools that can accelerate mainframe integration into their enterprise DevOps initiatives. Just use Zowe to entice new mainframe talent.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com.

Can Zowe Bring Young Developers to the Z

August 31, 2018

Are you ever frustrated by the Z? As powerful as it gets mainframes remain a difficult nut to crack, particularly for newcomers who have grown up with easier technologies. Even Linux on Z is not as simple or straightforward as on other platforms. This poses a problem for Z-based shops that are scrambling to replace retiring mainframers.

IBM – Jon Simon/Feature Photo Service

Shopping via smartphone

Certainly other organizations, mainly mainframe ISVs like Compuware and Syncsort, have succeeded in extending the GUI deeper into the Z but that alone is not enough. It remains too difficult for newcomers to take their newly acquired computer talents and readily apply them to the mainframe. Maybe Zowe can change this.

And here’s how:  Recent surveys show that flexibility, agility and speed are key.  Single platforms are out, multi-platforms, and multi-clouds are in. IBM’s reply: let’s bring things together with the announcement of Zowe, pronounced like joey starting with a z. Zowe represents the first open source framework for z/OS. As such it provides solutions for development and operations teams to securely manage, control, script, and develop on the mainframe like any other cloud platform. Launched with partners CA Technologies and Rocket Software along with the support of the Open Mainframe Project, the goal is to drive innovation for the community of next-generation mainframe developers and enable interoperability and scalability between products. Zowe promotes a faster team on-ramp to mainframe productivity, collaboration, knowledge sharing, and communication.

In short, IBM and partners are enabling users to access z/OS using a new open-source framework. Zowe, more than anything before, brings together generations of systems that were not designed to handle global networks of sensors and devices. Now, decades since IBM brought Linux to the mainframe IBM, CA, and Rocket Software are introducing Zowe, a new open-source software framework that bridges the divide between modern challenges like IoT and the mainframe.

Zowe has four components:

  1. Zowe APIs: z/OS has a set of Representational State Transfer (REST) operating system APIs. These are made available by the z/OS Management Facility (z/OSMF). Zowe uses these REST APIs to submit jobs, work with the Job Entry Subsystem (JES) queue, and manipulate data sets. Zowe Explorers are visual representations of these APIs that are wrapped in the Zowe web UI application. Zowe Explorers create an extensible z/OS framework that provides new z/OS REST services to enterprise tools and DevOps processes.
  2. Zowe API Mediation Layer: This layer has several key components, including that API Gateway built using Netflix Zuul and Spring Boot technology to forward API requests to the appropriate corresponding service through the micro-service endpoint UI and the REST API Catalog. This publishes APIs and their associated documentation in a service catalog. There also is a Discovery Service built on Eureka and Spring Boot technology, acting as the central point in the API Gateway. It accepts announcements of REST services while providing a repository for active services.
  3. Zowe Web UI: Named zLUX, the web UI modernizes and simplifies working on the mainframe and allows the user to create modern applications. This is what will enable non-mainframers to work productively on the mainframe. The UI works with the underlying REST APIs for data, jobs, and subsystems, and presents the information in a full-screen mode compared to the command-line interface.
  4. Zowe Command Line Interface (CLI): Allows users to interact with z/OS from a variety of other platforms, such as cloud or distributed systems, submit jobs, issue Time Sharing Option (TSO) and z/OS console commands, integrate z/OS actions into scripts, and produce responses as JSON documents. With this extensible and scriptable interface, you can tie in mainframes to the latest distributed DevOps pipelines and build in automation.

The point of all this is to enable any developer to manage, control, script, and develop on the mainframe like any other cloud platform. Additionally, Zowe allows teams to use the same familiar, industry-standard, open-source tools they already know to access mainframe resources and services too.

The mainframe may be older than many of the programmers IBM hopes Zowe will attract. But it opens new possibilities for next generation applications and for mainframe shops desperately needing new mission-critical applications for which customers are clamoring. This should radically reduce the learning curve for the next generation while making experienced professionals more efficient. Start your free Zowe trial here. BTW, Zowe’s code will be made available under the open-source Eclipse Public License 2.0.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

 

IBM Resurrects Moore’s Law

June 23, 2017

Guess Moore’s Law ain’t as dead as we were led to believe. On Jun 5 IBM and Research Alliance partners GLOBALFOUNDRIES and Samsung, along with equipment suppliers announced the development of an industry-first process to build silicon nano sheet transistors that will enable 5nm chips. Previously, IBM announced a 7nm process using a silicon germanium (SiGe) alloy.

As DancingDinosaur wrote in early Oct. 2015, the last z System that conformed to the expectations of Moore’s Law was the zEC12, introduced Aug 2012. IBM could boast then it had the fastest commercial processor available.  The subsequent z13 didn’t match it in processor speed.  The z13 chip runs a 22 nm core at 5 GHz, one-half a GHz slower than the zEC12, which ran its 32nm core at 5.5 GHz. IBM compensated for the slower chip speed by adding more processors throughout the system to boost I/O and other functions and optimizing the box every way possible.

5nm silicon nano-sheet transistors delivers 40% performance gain

By 2015, the z13 delivered about a 10 percent performance bump per core thanks to the latest tweaks in the core design, such as better branch prediction and better pipelining. But even at one-half Ghz slower, the z13 was the first system to process 2.5 billion transactions a day.  Even more importantly for enterprise data centers, z13 transactions are persistent, protected, and auditable from end-to-end, adding assurance as mobile transactions grow to an estimated 40 trillion mobile transactions per day by 2025. The z13 also received and continues to receive praise for its industry leading security ratings as well as its scalability and flexibility.

Just recently Hitachi announced a partnership with IBM to develop a version of the z13 to run its own operating system, VOS3. The resulting z13 will run the next generation of Hitachi’s AP series.

But IBM isn’t back in pursuit of Moore’s Law just to deliver faster traditional mainframe workloads. Rather, the company is being driven by its strategic initiatives, mainly cognitive computing. As IBM explained in the announcement: The resulting increase in performance will help accelerate cognitive computing, the Internet of Things (IoT), and other data-intensive applications delivered in the cloud. The power savings could also mean that the batteries in smartphones and other mobile products could last two to three times longer than today’s devices, before needing to be charged.

Scientists working as part of the IBM-led Research Alliance at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering’s NanoTech Complex in Albany, NY achieved the breakthrough by using stacks of silicon nanosheets as the device structure of the transistor instead of the standard FinFET architecture, which is the blueprint for the semiconductor industry up through 7nm node technology. “For business and society to meet the demands of cognitive and cloud computing in the coming years, advancement in semiconductor technology is essential,” said Arvind Krishna, senior vice president, Hybrid Cloud, and director, IBM Research in the announcement. “That’s why IBM aggressively pursues new and different architectures and materials that push the limits of this industry, and brings them to market in technologies like mainframes and our cognitive systems.”

Compared to the leading edge 10nm technology available in the market, according to IBM, a nanosheet-based 5nm technology can deliver 40 percent performance enhancement at fixed power, or 75 percent power savings at matched performance. This improvement enables a significant boost to meeting the future demands of artificial intelligence (AI) systems, virtual reality, and mobile devices.

These may not sound like the workloads you are running on your mainframe now, but systems with these chips are not going to be shipped in the next mainframe either. So, you have a couple of years. The IBM team expects to make progress toward commercializing 7nm in 2018. By the time they start shipping 5nm systems you might be desperate for a machine to run such workloads and others like them.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

BMC Mainframe Survey Confirms z System Is Here to Stay

November 11, 2016

No surprise there. BMC’s 11th annual mainframe survey covering 1,200 mainframe executives and tech professionals found 58% of respondents reported usage of the mainframe is increasing as they look to capitalize on every infrastructure advantage it provides and add more workloads. Another 23% consider the mainframe as the best option to run critical work.

ibm_system_z10

IBM z10

Driving the continuing interest in the mainframe are the new demands for data handling, scalable processing, analytics, and more. According to the BMC survey nearly 60% of companies are seeing increased data and transaction volumes. They opt to stay with the mainframe for its highly secure, superior data handling and transaction serving, particularly as digital business adds unpredictability and volatility to workloads.

Overall respondents fell into three primary groups: 1) entrenched mainframe shops, 58% that are on board for the long haul; 2) shops, 23% that intend to maintain a steady amount of work on the mainframe; and 3) the 19% that are moving away from the mainframe.  The first two groups, committed mainframe shops, amount to just over survey 80% of the respondents.

Many companies surveyed are focused on addressing the increased workload demands, especially the rapidly growing demand for new applications. But surprisingly, the survey does not directly touch on hybrid cloud, cognitive computing or any of the latest technologies IBM has been promoting, not even DevOps, which can streamline mainframe application development and deployment. “We are not hearing much about a hybrid cloud environments or blockchain yet. Most companies seem to be in the early tire kicking stage, observed John McKenny, BMC Vice President, Strategy and Operations.

Eighty-eight percent of companies in the first group, entrenched mainframe shops, for example, are looking to increase the workloads they run on Java on the mainframe, primarily to address new application demands. It also doesn’t hurt that Java on the mainframe also can help lower data center costs by directing workloads to lower cost assist processors.

Other interesting BMC survey findings:

  • Half of the respondents report keeping 50% of their data on the mainframe and continue to invest in the platform for reasons you already know—security, availability, data serving capability
  • Continued steady growth of Linux in production on the z: 41% in 2014, 48% in 2015, 52% in 2016
  • Increased use of Java on the mainframe report as 67% of respondents cite need to meet growing application demand

Those looking to reduce mainframe presence cited three reasons: 1) perception of high cost, 2) outdated management understanding, and 3) looking for ways to reduce workloads over time.  DancingDinosaur has spoken with mainframe shops intending to migrate off the z and they cite the usual reasons, especially #1 above.

Top mainframe priorities for 2016 according to the BMC survey:  Cost reduction/optimization (65%); data privacy, compliance, security (50%); application availability (49%); application modernization (41%. Responses indicated the priorities for next year haven’t changed at all.

Surprisingly, many of the latest technologies for the z that IBM has touted recently have not yet shown up in the BMC survey responses, except maybe Java and Linux. This would include hybrid clouds, blockchain, IoT, and cognitive computing. IDC, for example, already is projecting cognitive computing to grow at a CAGR of 55.1% from 2016 to 2020. For z shops, however, cognitive computing appears almost invisible.

In some case with surveys like this you need to read between the lines. Where respondents report changes in activity levels driving application growth or the growth of interest in Java or the frequency of application changes and references to operational analytics they’re making oblique references to mobile or big data or even cognitive computing or other recent technologies for the z.

At its best, the BMC notes that digital technologies are transforming the ways in which mainframe shops conduct business and interact with their customers.  Adds BMC mainframe customer Credit Suisse: “IT departments are moving toward centralized, virtualized, and highly automated environments. This is being pursued to drive cost and processing efficiencies. Many companies realize that the Mainframe has provided these benefits for many years and is a mature and stable environment,” said Frank Cortell, Credit Suisse Director of Information Technology.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

 

OpenCAPI, Gen-Z, CCIX Initiate a New Computing Era

October 20, 2016

The next generation data center will be a more open, cooperative, and faster place judging from the remarkably similar makeup of three open consortia, OpenCAPI , Gen-Z, and CCIX. CCIX allows processors based on different instruction set architectures to extend their cache coherency to accelerators, interconnect, and I/O.

OpenCAPI provides a way to attach accelerators and I/O devices with coherence and virtual addressing to eliminate software inefficiency associated with the traditional I/O subsystem, and to attach advanced memory technologies.  The focus of OpenCAPI is on attached devices primarily within a server. Gen-Z, announced around the same time, is a new data access technology that primarily enables read and write operations among disaggregated memory and storage.

open-power-rethink-datacenter

Rethink the Datacenter

It’s quite likely that your next data center will use all three. The OpenCAPI group includes AMD, Dell EMC, Google, Hewlett Packard Enterprise, IBM, Mellanox Technologies, Micron, NVIDIA and Xilinx. Their new specification promises to enable up to 10X faster server performance with the first products expected in the second half of 2017.

The Gen-Z consortium consists Advanced Micro Devices, Broadcom, Huawei Technologies, Red Hat, Micron, Xilinx, Samsung, IBM, and Cray. Other founding members are Cavium, IDT, Mellanox Technologies, Microsemi, Seagate, SK Hynix, and Western Digital. They plan to develop a scalable computing interconnect and protocol that will enable systems to keep with the rapidly rising tide of data that is being generated and that needs to be analyzed. This will require the rapid movement of high volumes of data between memory and storage.

The CCIX initial members include Amphenol Corp., Arteris Inc., Avery Design Systems, Atos, Cadence Design Systems, Inc., Cavium, Inc., Integrated Device Technology, Inc., Keysight Technologies, Inc., Micron Technology, Inc., NetSpeed Systems, Red Hat Inc., Synopsys, Inc., Teledyne LeCroy, Texas Instruments, and TSMC.

The basic problem all three address revolves around how to make the volume and variety of new hardware forge fast communications and work together. In effect each group, from its own particular perspective, aims to boost the performance and interoperability of data center servers, devices, and components engaged in generating and handling myriad data and tasked with analyzing large amounts of that data. This will only be compounded as IoT, blockchain, and cognitive computing ramp up.

To a large extent, this results from the inability of Moore’s Law to continue to double the number of processors indefinitely. Future advances must rely on different sorts of hardware tweaks and designs to deliver greater price/performance.

Then in Aug. 2016 IBM announced a related chip breakthrough.  It unveiled the industry’s first 7 nm chip that could hold more than 20 billion tiny switches or transistors for improved computing power. The new chips could help meet demands of future cloud computing and Big Data systems, cognitive computing, mobile products and other emerging technologies, according to IBM.

Most chips today in servers and other devices use microprocessors between 14 and 22 nanometers (nm). The 7nm technology represents at least a 50 percent power improvement. IBM intends to apply the new chips to analyze DNA, viruses, and exosomes. IBM expects to test this lab-on-a-chip technology starting with prostate cancer.

The point of this digression into chips and Moore’s Law is to suggest the need for tools and interfaces like Open CAPI, Gen-Z, and CCIX. As the use cases for ultra fast data analytics expands along with the expected proliferation of devices speed becomes critical. How long do you want to wait for an analysis of your prostate or breast cells? If the cells are dear to you, every nanosecond matters.

For instance, OpenCAPI provides an open, high-speed pathway for different types of technology – advanced memory, accelerators, networking and storage – to more tightly integrate their functions within servers. This data-centric approach to server design puts the compute power closer to the data and removes inefficiencies in traditional system architectures to help eliminate system bottlenecks that significantly improve server performance.  In some cases OpenCAPI enables system designers to access memory with sub-500 nanosecond latency.

IBM plans to introduce POWER9-based servers that leverage the OpenCAPI specification in the second half of 2017. Similarly, expect other members of OpenPOWER Foundation to introduce OpenCAPI enabled products in the same time frame. In addition, Google and Rackspace’s new server under development, codenamed Zaius and announced at the OpenPOWER Summit in San Jose, will leverage POWER9 processor technology and plans to provide the OpenCAPI interface in its design. Also, Mellanox plans to enable the new specification capabilities in its future products and Xilinx plans to support OpenCAPI enabled FPGAs

As reported at the Gen-Z announcement, “The formation of these new consortia (CCIX, OpenCAPI, and Gen-Z), backed by more than 30 industry-leading global companies, supports the premise that the datacenter of the future will require open standards. We look forward to collaborating with CCIX and OpenCAPI as this new ecosystem takes shape,” said Kurtis Bowman, Gen-Z Consortium president. Welcome to the 7nm computing era.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghostwriter. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Taps PCM to Advance Neuron-based Cognitive Computing

August 19, 2016

Just a couple of months ago DancingDinosaur reported a significant IBM advance in phase change memory (PCM). Then earlier this month IBM announced success in creating randomly spiking neurons using phase-change materials to store and process data. According to IBM, this represents a significant step toward achieving energy-efficient, ultra-dense, integrated neuromorphic technologies for application in cognitive computing.

IBM Phase Change Neurons

Phase Change Neurons

This also represents big step toward a cognitive computer. According to IBM, scientists have theorized for decades that it should be possible to imitate the versatile computational capabilities of large populations of neurons as the human brain does. With PCM it appears to be happening sooner than the scientists expected. “We have been researching phase-change materials for memory applications for over a decade, and our progress in the past 24 months has been remarkable,” said IBM Fellow Evangelos Eleftheriou.

As the IBM researchers explain: Phase-change neurons consist of a chip with large arrays of phase-change devices that store the state of artificial neuronal populations in their atomic configuration. In the graphic above individual devices are accessed by means of an array of probes to allow for precise characterization, modeling and interrogation. The tiny squares are contact pads that are used to access the nanometer-scale, phase-change cells (not visible). The sharp probes touch the contact pads to change the phase configuration stored in the cells in response to the neuronal input. Each set of probes can access a population of 100 cells. The chip hosts only the phase-change devices that are the heart of the neurons. There are thousands to millions of these cells on one chip that can be accessed (in this particular graphic) by means of the sharp needles of the probe card.

Not coincidentally, this seems to be dovetailing with IBM’s sudden rush to cognitive computing overall, one of the company’s recent strategic initiatives that has lately moved to the forefront.  Just earlier this week IBM was updating industry analysts on the latest with Watson and IoT and, sure enough, cognitive computing plays a prominent role.

As IBM explains it, the artificial neurons designed by IBM scientists in Zurich consist of phase-change materials, including germanium antimony telluride, which exhibit two stable states, an amorphous one (without a clearly defined structure) and a crystalline one (with structure). These artificial neurons do not store digital information; they are analog, just like the synapses and neurons in our biological brain, which is what makes them so tempting for cognitive computing.

In the published demonstration, the team applied a series of electrical pulses to the artificial neurons, which resulted in the progressive crystallization of the phase-change material, ultimately causing the neurons to fire. In neuroscience, this function is known as the integrate-and-fire property of biological neurons. This forms the foundation for event-based computation and, in principle, is similar to how our brain triggers a response when we touch something hot.

Even a single neuron can exploit this integrate-and-fire property to detect patterns and discover correlations in real-time streams of event-based data. To that end, IBM scientists have organized hundreds of artificial neurons into populations and used them to represent fast and complex signals. Moreover, the artificial neurons have been shown to sustain billions of switching cycles, which would correspond to multiple years of operation at an update frequency of 100 Hz. The energy required for each neuron update was less than five picojoule and the average power less than 120 microwatts (for comparison, 60 million microwatts power a 60 watt lightbulb).

The examples the researchers have provided so far seem pretty conventional.  For example, IoT sensors can collect and analyze volumes of weather data collected at the network edge for faster forecasts. Artificial neurons could be used to detect patterns in financial transactions that identify discrepancies. Even data from social media can be used to discover new cultural trends in real time. To make this work, large populations of these high-speed, low-energy nano-scale neurons would most likely be used in neuromorphic coprocessors with co-located memory and processing units, effectively mixing neuron-based cognitive computing with conventional digital computing.

Makes one wonder if IBM might regret spending millions to dump its chip fabrication capabilities.  According to published reports Samsung is very interested in this chip technology and wants to put the new processing power to work fast. The processor, reportedly dubbed TrueNorth by IBM, uses 4,096 separate processing cores to form one standard chip. Each can operate independently and are designed for low power consumption. Samsung hopes  the chip can help with visual pattern recognition for use in autonomous cars, which might be just a few years away. So, how is IBM going to make any money from this with its chip fab gone and commercial cognitive computers still off in the future?

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Discounts z/OS Cloud Activity

August 12, 2016

The latest iteration of IBM’s z/OS workload pricing aims at to lower the cost of running cloud workloads.  In a recent announcement, z Systems Workload Pricing for Cloud (zWPC) for z/OS seeks to minimize the impact of new public cloud workload transaction growth on Sub-Capacity license charges. IBM did the same thing with mobile workloads when they started driving up the 4-hour workload averages on the z. As more z workloads interact with public clouds this should start to add up, if it hasn’t already.

bluemix garage -ni_5554516560

Bluemix Garages in the Cloud

As IBM puts it: zWPC applies to any organization that has implemented Sub-Capacity pricing via the basic AWLC or AEWLC pricing mechanisms for the usual MLC software suspects. These include z/OS, CICS, DB2, IMS, MQ and WebSphere Application Server (WAS).  An eligible transaction is one classified as Public Cloud-originated, connecting to a z/OS hosted transactional service and/or data source via a REST or SOAP web service.  Public cloud workloads are defined as transactions processed by named Public cloud application transactions identified as originating from a recognized Public Cloud offering, including but not limited to, Amazon Web Services (AWS), Microsoft Azure, IBM Bluemix, and more.

IBM appears to have simplified how you identify eligible workloads. As the company notes: zWPC does not require you to isolate the public cloud work in separate partitions, but rather offers an enhanced way of reporting. The z/OS Workload Manager (WLM) allows clients to use WLM classification rules to distinguish cloud workloads, effectively easing the data collection requirements for public cloud workload transactions.

So how much will you save? It reportedly reduces eligible hourly values by 60 percent. The discount produces an adjusted Sub-Capacity value for each reporting hour. What that translates into on your monthly IBM software invoice once all the calculations and fine print are considered amounts to a guess at this point. But at least you’ll save something. The first billing eligible under this program starts Dec. 1, 2016.

DancingDinosaur expects IBM to eventually follow with discounted z/OS workload pricing for IoT and blockchain transactions and maybe even cognitive activity. Right now the volume of IoT and blockchain activity is probably too low to impact anybody’s monthly license charges. Expect those technologies ramp up in coming years with many industry pundits projecting huge numbers—think billions and trillions—that will eventually impact the mainframe data center and associated software licensing charges.

Overall, Workload License Charges (WLC) constitute a monthly software license pricing metric applicable to IBM System z servers running z/OS or z/TPF in z/Architecture (64-bit) mode.  The driving principle of WLS amounts to pay-for-what-you-use, a laudable concept. In effect it lowers the cost of incremental growth while further reducing software costs by proactively managing associated peak workload utilization.

Generally, DancingDinosaur applauds anything IBM does to lower the cost of mainframe computing.  Playing with workload software pricing in this fashion, however, seems unnecessary. Am convinced there must be simpler ways to lower software costs without the rigmarole of metering and workload distribution tricks. In fact, a small mini-industry has cropped up among companies offering tools to reduce costs, primarily through various ways to redistribute workloads to avoid peaks.

A modification to WLC, the variable WLC (VWLC) called AWLC (Advanced) and the EWLC (Entry), aligns with most of the z machines introduced over the past couple of years.  The result, according to IBM, forms a granular cost structure based on MSU (CPU) capacity that applies to VWLC and associated pricing mechanisms.

From there you can further tweak the cost by deploying Sub-Capacity and Soft Capping techniques.  Defined Capacity (DC), according to IBM, allows the sizing of an LPAR in MSU such that the LPAR will not exceed the designated MSU amount.  Group Capacity Limit (GCL) extends the Defined Capacity principle for a single LPAR to a group of LPARs, allowing MSU resources to be shared accordingly.  BTW, a potential downside of GCL is that is one LPAR in the group can consume all available MSUs due to a rogue transaction. Again, an entire mini industry, or maybe no so mini, has emerged to help handle workload and capacity pricing on the z.

At some point in most of the conference pricing sessions the eyes of many attendees glaze over.  By Q&A time the few remaining pop up holding a copy of a recent invoice and ask what the hell this or that means and what the f$#%@#$ they can do about it.

Have to admit that DancingDinosaur did not attend the most recent SHARE conference, where pricing workshops can get quite energetic, so cannot attest to the latest fallout. Still, the general trend with mobile and now with cloud pricing discounts should be lower costs.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM 2Q 2016 Report—Where’s z System and POWER?

July 22, 2016

“IBM continues to establish itself as the leading cognitive solutions and cloud platform company,” said Ginni Rometty, IBM chairman, president and chief executive officer, in a statement accompanying the latest IBM 2Q financial report. The strategic imperatives grew; second-quarter revenues from its cloud, analytics, and engagement units— increased 12 percent year to year.

IBM Quantum Computing Lab - Friday, April 29, 2016, Yorktown Heights, NY (Jon Simon/Feature Photo Service for IBM)

IBM Quantum Experience delivered via Cloud (Jon Simon/Feature Photo Service for IBM)

Where’s z and POWER? The z and POWER platforms continued to flounder: revenues of $2.0 billion, down 23.2 percent. Revenue reflects z Systems product cycle dynamics; gross profit margin improved in both z Systems and Power. “Product cycle dynamics” refers to the lack of a new z.  In the past year IBM introduced the new LinuxONE and, more recently a new z13s, essentially what used to be known as a Business Class mainframe.

There is no hint, however, of a new z, a z14 that will drive product dynamics upward. IBM showed a POWER roadmap going all the way out to the POWER10 in 2020 but nothing comparable for the z.

DancingDinosaur, a longtime big iron bigot, remains encouraged by IBM’s focus on its strategic initiatives and statements like this: “And we continue to invest for growth with recent breakthroughs in quantum computing, Internet of Things and blockchain solutions for the IBM Cloud.” IBM strategic initiatives in cloud, mobile, IoT, and blockchain will drive new use of the mainframe, especially as the projected volumes of things, transactions, users, and devices skyrocket.

Second-quarter revenues from the company’s strategic imperatives — cloud, analytics and engagement — increased 12 percent year to year.  Cloud revenues (public, private and hybrid) for the quarter increased 30 percent.  Cloud revenue over the trailing 12 months was $11.6 billion.  The annual run rate for cloud as-a-service revenue — a subset of total cloud revenue — increased to $6.7 billion from $4.5 billion in the second quarter of 2015.  Revenues from analytics increased 5 percent.  Revenues from mobile increased 43 percent and from security increased 18 percent.

IBM indirectly is trying to boost the z and the cloud. CSC and IBM  announced an alliance with IBM in which IBM will provide CSC Cloud Managed Services for z Systems. CSC already includes IBM SoftLayer as part of its “Service-enabled Enterprise” strategy. “Cloud for z” extends that offering and will be of interest to current and potential mainframe customers in healthcare, insurance, and finance. CSC still sees life in the managed mainframe market, and IBM Global Technology Services, a competitor to CSC, apparently is happy to let them sell managed cloud services for mainframes. All this is taking place as IBM scrambles to secure a leadership share of cloud revenue, and any cloud billing CSC brings will help.

Microsoft, like IBM, claimed big cloud momentum on its fourth quarter conference call, according to a report in Fortune Magazine. It was enough to send Microsoft share price up 4% at one point in after hours trading.

As Fortune notes, for Microsoft as for IBM and other legacy IT providers like Oracle, putting up big cloud numbers is mandatory as more companies change the way they buy IT products. Instead of purchasing hundreds or thousands of new servers or storage boxes every few years, more companies are running their software and storing their data on shared public cloud infrastructure, like Microsoft Azure, Amazon Web Services, the Google Compute Platform, or the IBM Cloud.

For reporting purposes, Microsoft combines Azure with other products in its intelligent cloud product segment. Overall, that segment’s revenue grew about 7% year over year to $6.7 billion from about $6.3 billion.

Oracle, too, is facing the same scramble to establish an enterprise cloud presence. Cloud software as a service (SaaS) and platform as a service (PaaS) revenues were $690 million, up 66% in U.S. dollars. Total Cloud revenues, including infrastructure as a service (IaaS), were $859 million, up 49% in U.S. dollars. At the same time, Oracle’s hardware revenue fell by 7% to $1.3 billion, and its software license revenue fell by 2% to $7.6 billion.

“We added more than 1,600 new SaaS customers and more than 2,000 new PaaS customers in Q4” (which ended in June), said Oracle CEO, Mark Hurd. “In Fusion ERP alone, we added more than 800 new cloud customers. Today, Oracle has nearly 2,600 Fusion ERP customers in the Oracle Public Cloud — that’s ten-times more cloud ERP customers than Workday.”

Hewlett Packard Enterprise (HPE) is the last of the big public enterprise platform vendors, along with IBM and Oracle. (Dell is private and acquired EMC). HPE recently reported its best quarter in years. Second quarter net revenue of $12.7 billion, up 1% from the prior-year period. “Today’s results represent our best performance since I joined in 2011,” said Meg Whitman, president and chief executive officer, Hewlett Packard Enterprise. The businesses comprising HPE grew revenue over the prior-year period on an as-reported basis for the first time in five years.

IBM needs to put up some positive numbers. Seventeen consecutive losing quarters is boring. Wouldn’t it be exciting if a turnaround started with a new enterprise z14?

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Compuware Continues Mainframe GUI Tool Enhancements

July 1, 2016

Early in 2015 Compuware announced the first in what it promised would be a continuing stream of new mainframe tools and tool enhancements. Did anyone really believe them? Mainframe ISVs are not widely regarded for their fast release cycles. DancingDinosaur reported on it then here and has continued to follow up and report its progress through a handful of new releases. This past week, DancingDinosaur received new Compuware mainframe tool announcements. For a mainframe ISV this is almost unheard of. IBM sometimes releases new mainframe products in intense spurts but then quickly resumes its typical languid release pace.

compuware ispw

Screen from Compuware’s ISPW for Continuous Delivery to the Mainframe

Let’s take a look at each of these new releases. First, ISPW Deploy, an advanced mainframe release automation solution that enables large enterprises to bring continuous delivery best practices to their IBM z/OS environments. ISPW Deploy, built on the ISPW technology Compuware acquired in January 2016, facilitates faster and more reliable mainframe software deployment. Specifically, it helps, according to Compuware, in three ways, through:

  1. Automation that rapidly moves code through the deployment process, including test staging and approvals, while also providing greatly simplified full or partial rollbacks.
  1. Visualization that enables DevOps managers to quickly pinpoint deployment issues in order to both solve immediate rollout problems and address persistent bottlenecks in code promotion.
  1. Integrations with both third-party solutions and Compuware’s own industry-leading mainframe toolkit that allow IT to build complete SCM-to-production DevOps pipelines and to quickly launch associated remediation support tools if and when deployment issues occur.

Compuware is further empowering enterprises to achieve mainframe agility by integrating. For instance, its ISPW and XebiaLabs’ cross-platform continuous delivery solutions enable IT organizations to orchestrate and visualize their mainframe DevOps processes in a common manner with their broader cross-platform DevOps automation.

The second announcement focused on Xebial Labs, as noted above. The idea here is to deliver cross-platform continuous releases for the mainframe. As Compuware explained, enterprises using XebiaLabs’ solution suite and Compuware ISPW, can now automate and monitor all phases of mainframe DevOps within the same continuous delivery management environment they use for their distributed, web, and cloud platforms. This automation and monitoring includes test/QA, pre-copy staging, and code promotion. The goal, as with all DevOps, is to speed digital agility for mainframe or distributed systems or both.

The third announcement concerned a partnership between Compuware and ConicIT that aims to help a new generation of IT ops staff proactively resolve emerging mainframe issues before they impact application service levels. It does so by integrating ConicIT’s predictive mainframe analytics with Compuware’s Strobe, which provides visually intuitive troubleshooting intelligence. Together, the two companies promise to enable even IT staff with relatively little hands-on mainframe experience to quickly identify and resolve a wide range of application performance problems.

The key to doing this is a reliance on the adoption of intuitive GUI interfaces. Compuware started this with its Topaz tools and has been continuing along this path for two years. Compuware’s CEO, Chris O’Malley, has been harping on these themes almost since he first arrived there.

Compuware customers apparently have gotten the message. As reported: “Market pressures are making it essential for us to deliver quality products and services to our clients more frequently, and the mainframe plays a critical role in that delivery,” according to Craig Danielson, Assistant Vice President for Commerce Bank. “We leverage ISPW to help in this capacity and its new capabilities will provide us the automation and visibility of our software deployment process to help us continuously improve our internal operations and services.” (note: DancingDinosaur did not validate this customer statement.)

Companies will need all the help modern mainframe tools can deliver. Mainframe data centers are facing unprecedented challenges that require unusual speed and agility. In short, they need DevOps fast. And they will have to respond with an increasingly aging core of experienced mainframe staff supplemented by millennials who have to be coaxed and cajoled onto the mainframe with easy graphical tools. If mainframe data centers can’t respond to these challenges—not just cloud, mobile, Linux, and analytics, but also IoT, blockchain, cognitive computing, and whatever else is coming along next—how are they going to cope. Already their users, the line of business managers, are turning to shadow IT out of frustration with the slow response from the mainframe data centers. And you know what comes next.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 


%d bloggers like this: