Posts Tagged ‘Java’

Attract Young Techies to the Z

September 14, 2018

A decade ago DancingDinosaur was at a major IBM mainframe event and looked around at the analysts milling about and noticed all the gray hair and balding heads and very few women, and, worse, few appeared to be under 40, not exactly a crowd that would excite young male computer geeks. At the IBM introduction of the Z it had become even worse; more gray or balding heads, mine included, and none of the few Z professional female analysts that I knew under 40 were there at all.

millions of young eager to join the workforce (Image by © Reuters/CORBIS)

An IBM analyst relations person agreed, noting that she was under pressure from IBM to get some young techies at Z events.  Sounded like Mission Impossible to me. But my thinking has changed in the last couple of weeks. A couple of discussions with 20-something techies suggested that Zowe has the potential to be a game changer as far as young techies are concerned.

DancingDinosaur covered Zowe two weeks ago here. It represents the first open source framework for z/OS. As such it provides solutions for development and operations teams to securely manage, control, script, and develop on the mainframe like any other cloud platform.

Or, to put it another way, with Zowe IBM and partners CA Technologies and Rocket Software are enabling users to access z/OS using a new open-source framework. Zowe, more than anything before, brings together generations of systems that were not designed to handle global networks of sensors and devices. Now, decades since IBM brought Linux to the mainframe IBM, CA, and Rocket Software are introducing Zowe, as a new open-source software framework that bridges the divide between modern challenges like IoT and the mainframe.

Says Sean Grady, a young (under 30) software engineer at Rocket Software: Zowe to me is really cool, the first time I could have a sustained mainframe conversation with my peers. Their first reactions were really cynical, he recalls. Zowe changed that. “My peers know Linux tools really well,” he notes.

The mainframe is perceived as separate thing, something my peers couldn’t touch, he added. But Linux is something his peers know really well so through Zowe it has tools they know and like. Suddenly, the mainframe is no longer a separate, alien world but a familiar place. They can do the kind of work they like to do, in a way they like to do it by using familiar tools.

And they are well paid, much better than they can get coding here-and-gone mobile apps for some startup. Grady reports his starting offers ran up to $85k, not bad for a guy just out of college. And with a few years of experience now you can bet he’s doing a lot better than that.

The point of Zowe is to enable any developer, but especially new developers who don’t know or care about the mainframe, to manage, control, script, and develop on the mainframe like any other cloud platform. Additionally, Zowe allows teams to use the same familiar, industry-standard, open-source tools they already know to access mainframe resources and services.

The mainframe is older than many of the programmers IBM hopes Zowe will attract. But it opens new possibilities for next generation applications for mainframe shops desperately needing new mission-critical applications for which customers are clamoring. Already it appears ready to radically reduce the learning curve for the next generation.

Initial open source Zowe modules will include an extensible z/OS framework that provides new APIs and z/OS REST services to transform enterprise tools and DevOps processes that can incorporate new technology, languages, and workflows. It also will include a unifying workspace providing a browser-based desktop app container that can host both traditional and modern user experiences and is extensible via the latest web toolkits. The framework will also incorporate an interactive and scriptable command-line interface that enables new ways to integrate z/OS in cloud and distributed environments.

These modules represent just the start. More will be developed over time, enabling development teams to manage and develop on the mainframe like any other cloud platform. Additionally, the modules reduce risk and cost by allowing teams to use familiar, industry-standard, open source tools that can accelerate mainframe integration into their enterprise DevOps initiatives. Just use Zowe to entice new mainframe talent.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com.

Can Zowe Bring Young Developers to the Z

August 31, 2018

Are you ever frustrated by the Z? As powerful as it gets mainframes remain a difficult nut to crack, particularly for newcomers who have grown up with easier technologies. Even Linux on Z is not as simple or straightforward as on other platforms. This poses a problem for Z-based shops that are scrambling to replace retiring mainframers.

IBM – Jon Simon/Feature Photo Service

Shopping via smartphone

Certainly other organizations, mainly mainframe ISVs like Compuware and Syncsort, have succeeded in extending the GUI deeper into the Z but that alone is not enough. It remains too difficult for newcomers to take their newly acquired computer talents and readily apply them to the mainframe. Maybe Zowe can change this.

And here’s how:  Recent surveys show that flexibility, agility and speed are key.  Single platforms are out, multi-platforms, and multi-clouds are in. IBM’s reply: let’s bring things together with the announcement of Zowe, pronounced like joey starting with a z. Zowe represents the first open source framework for z/OS. As such it provides solutions for development and operations teams to securely manage, control, script, and develop on the mainframe like any other cloud platform. Launched with partners CA Technologies and Rocket Software along with the support of the Open Mainframe Project, the goal is to drive innovation for the community of next-generation mainframe developers and enable interoperability and scalability between products. Zowe promotes a faster team on-ramp to mainframe productivity, collaboration, knowledge sharing, and communication.

In short, IBM and partners are enabling users to access z/OS using a new open-source framework. Zowe, more than anything before, brings together generations of systems that were not designed to handle global networks of sensors and devices. Now, decades since IBM brought Linux to the mainframe IBM, CA, and Rocket Software are introducing Zowe, a new open-source software framework that bridges the divide between modern challenges like IoT and the mainframe.

Zowe has four components:

  1. Zowe APIs: z/OS has a set of Representational State Transfer (REST) operating system APIs. These are made available by the z/OS Management Facility (z/OSMF). Zowe uses these REST APIs to submit jobs, work with the Job Entry Subsystem (JES) queue, and manipulate data sets. Zowe Explorers are visual representations of these APIs that are wrapped in the Zowe web UI application. Zowe Explorers create an extensible z/OS framework that provides new z/OS REST services to enterprise tools and DevOps processes.
  2. Zowe API Mediation Layer: This layer has several key components, including that API Gateway built using Netflix Zuul and Spring Boot technology to forward API requests to the appropriate corresponding service through the micro-service endpoint UI and the REST API Catalog. This publishes APIs and their associated documentation in a service catalog. There also is a Discovery Service built on Eureka and Spring Boot technology, acting as the central point in the API Gateway. It accepts announcements of REST services while providing a repository for active services.
  3. Zowe Web UI: Named zLUX, the web UI modernizes and simplifies working on the mainframe and allows the user to create modern applications. This is what will enable non-mainframers to work productively on the mainframe. The UI works with the underlying REST APIs for data, jobs, and subsystems, and presents the information in a full-screen mode compared to the command-line interface.
  4. Zowe Command Line Interface (CLI): Allows users to interact with z/OS from a variety of other platforms, such as cloud or distributed systems, submit jobs, issue Time Sharing Option (TSO) and z/OS console commands, integrate z/OS actions into scripts, and produce responses as JSON documents. With this extensible and scriptable interface, you can tie in mainframes to the latest distributed DevOps pipelines and build in automation.

The point of all this is to enable any developer to manage, control, script, and develop on the mainframe like any other cloud platform. Additionally, Zowe allows teams to use the same familiar, industry-standard, open-source tools they already know to access mainframe resources and services too.

The mainframe may be older than many of the programmers IBM hopes Zowe will attract. But it opens new possibilities for next generation applications and for mainframe shops desperately needing new mission-critical applications for which customers are clamoring. This should radically reduce the learning curve for the next generation while making experienced professionals more efficient. Start your free Zowe trial here. BTW, Zowe’s code will be made available under the open-source Eclipse Public License 2.0.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

 

IBM AI Reference Architecture Promises a Fast Start

August 10, 2018

Maybe somebody in your organization has already fooled around with a PoC for an AI project. Maybe you already want to build it out and even put it into production. Great! According to IBM:  By 2020, organizations across a wide array of different industries that don’t deploy AI will be in trouble. So those folks already fooling around with an AI PoC will probably be just in time.

To help organization pull the complicated pieces of AI together, IBM, with the help of IDC, put together its AI Infrastrucure Reference Architecture. This AI reference architecture, as IBM explains, is intended to be used by data scientists and IT professionals who are defining, deploying and integrating AI solutions into an organization. It describes an architecture that will support a promising proof of concept (PoC), experimental application, and sustain growth into production as a multitenant system that can continue to scale to serve a larger organization, while integrating into the organization’s existing IT infrastructure. If this sounds like you check it out. The document runs short, less than 30 pages, and free.

In truth, AI, for all the wonderful things you’d like to do with it, is more a system vendor’s dream than yours.  AI applications, and especially deep learning systems, which parse exponentially greater amounts of data, are extremely demanding and require powerful parallel processing capabilities. Standard CPUs, like those populating racks of servers in your data center, cannot sufficiently execute AI tasks. At some point, AI users will have to overhaul their infrastructure to deliver the required performance if they want to achieve their AI dreams and expectations.

Therefore, IDC recommends businesses developing AI capabilities or scaling existing AI capabilities, should plan to deliberately hit this wall in a controlled fashion. Do it knowingly and in full possession of the details to make the next infrastructure move. Also, IDC recommends you do it in close collaboration with a server vendor—guess who wants to be that vendor—who can guide them from early stage to advanced production to full exploitation of AI capabilities throughout the business.

IBM assumes everything is going to AI as quickly as it can, but that may not be the case for you. AI workloads include applications based on machine learning and deep learning, using unstructured data and information as the fuel to drive the next results. Some businesses are well on their way with deploying AI workloads, others are experimenting, and a third group is still evaluating what AI applications can mean for their organization. At all three stages the variables that, if addressed properly, together make up a well-working and business-advancing solution are numerous.

To get a handle on these variables, executives from IT and LOB managers often form a special committee to actively consider their organization’s approach to the AI. Nobody wants to invest in AI for the sake of AI; the vendors will get rich enough as it is. Also, there is no need to reinvent the wheel; many well-defined use cases exist that are applicable across industries. Many already are noted in the AI reference guide.

Here is a sampling:

  • Fraud analysis and investigation (banking, other industries)
  • Regulatory intelligence (multiple industries)
  • Automated threat intelligence and prevention systems (many industries)
  • IT automation, a sure winner (most industries)
  • Sales process recommendation and automation
  • Diagnosis and treatment (healthcare)
  • Quality management investigation and recommendation (manufacturing)
  • Supply and logistics (manufacturing)
  • Asset/fleet management, another sure winner (multiple industries)
  • Freight management (transportation)
  • Expert shopping/buying advisory or guide

Notes IDC: Many can be developed in-house, are available as commercial software, or via SaaS in the cloud.

Whatever you think of AI, you can’t avoid it. AI will penetrate your company embedded in the new products and services you buy.

So where does IBM hope your AI effort end up? Power9 System, hundreds of GPUs, and PowerAI. Are you surprised?

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

New Syncsort Tools Boost IBMi

July 25, 2018

Earlier this week Syncsort announced new additions to its family of products that can be used to help address top-of-mind compliance challenges faced by IT leaders, especially IBMi shops. Specifically, Syncsort’s IBMi security products can help IBMi shops comply with the EU’s General Data Protection Regulation (GDPR) and strengthen security with multi-factor authentication.

The new innovations in the Syncsort Assure products follow the recent acquisition of IBMi data privacy products from Townsend Security. The Alliance Encryption and Security Suite can be used to address protection of sensitive information and compliance with multi-factor authentication, encryption, tokenization, secure file transfer, and system log collection.

Syncsort’s Cilasoft Compliance and Security Suite for IBMi and Syncsort’s Enforcive Enterprise Security Suite provide unique tools that can help organizations comply with regulatory requirements and address security auditing and control policies. New releases of both security suites deliver technology that can be used to help accelerate and maintain compliance with GDPR.

As the bad guys get more effective, multi-factor authentication is required in many compliance regulations; such as PCI-DSS 3.2, NYDFS Cybersecurity Regulation, Swift Alliance Access, and HIPAA. Multi-factor authentication strengthens login security by requiring something more than a password or passphrase; only granting access after two or more authentication factors have been verified.

To help organizations fulfill regulatory requirements and improve the security of their IBMi systems and applications, Syncsort has delivered the new, RSA-certified Cilasoft Reinforced Authentication Manager for IBMi (RAMi). RAMi’s rules engine facilitates the set-up of multi-factor authentication screens for users or situations that require it, based on specific criteria. RAMi’s authentication features also enable self-service user profile re-enablement and password changes and support of the four eyes principle of supervised changes to sensitive data. Four eyes principle requires that any requested action must be approved by at least two people.

Syncsort expects 30% of its revenue to come from IBMi products. It also plans to integrate its Assure products with Ironstream to offer capacity management for IBMi.

In one sense, Syncsort is joining a handful of vendors, led by IBM, who continue to expand and enhance IBMi. DancingDinosaur has been writing about the IBMi even before it became the AS400, which recently celebrated its 30th birthday this week, writes Timothy Prickett Morgan, a leading analyst at the Next Platform. The predecessors to the AS/400 that your blogger wrote about back then were the System 36 and System 38, but they didn’t survive.  In those 30+ years, however, the IBMi platform has continued to evolve to meet customer needs, most recently by running on Power Systems, where it still remains a viable business, Morgan noted.

The many rivals of the OS/400 platform and its follow-ons since that initial launch of the AS/400 are now gone. You may recall a few of them: DEC’s VMS for the VAX and Alpha systems, Hewlett Packard’s MPE for the HP 3000, HP-UX for the HP 9000s, and Sun Microsystems’ Solaris for the Sparc systems.  DancingDinosaur once tried to cheerlead an effort to port Solaris/Sparc to the mainframe but IBM didn’t buy into that.

Among all of these and other platforms, IBMi is still out there, with probably around 125,000 unique customers and maybe between 250,000 and 300,000 systems. Morgan estimates.

He adds: As much as computing and automation has exploded on the scene since the first AS/400 arrived, one thing continues: Good old fashioned online transaction processing is something that every business still has to do, and even the biggest hyperscalers use traditional applications to keep the books and run the payroll.

The IBMi platform operates as more than an OLTP machine, evolving within the constantly changing environment of modern datacenters. This is a testament, Morgan believes, to the ingenuity and continuing investment by IBM in its Power chips, Power Systems servers, and the IBMi and AIX operating systems. Yes, Linux came along two decades ago and has bolstered the Power platforms, but not to the same extent that Linux bolstered the mainframe. The mainframe had much higher costs and lower priced Linux engines on mainframes exhibited a kind of elasticity of demand that IBM wishes it could get for IBMi and z/OS. Morgan is right about a lot but DancingDinosaur still wishes IBM had backed Solaris/Sparc on the z alongside Linux. Oh well.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Expands and Enhances its Cloud Offerings

June 15, 2018

IBM announced 18 new availability zones in North America, Europe, and Asia Pacific to bolster its IBM Cloud business and try to keep pace with AWS, the public cloud leader, and Microsoft. The new availability zones are located in Europe (Germany and UK), Asia-Pacific (Tokyo and Sydney), and North America (Washington, DC and Dallas).

IBM cloud availability zone, Dallas

In addition, organizations will be able to deploy multi-zone Kubernetes clusters across the availability zones via the IBM Cloud Kubernetes Service. This will simplify how they deploy and manage containerized applications and add further consistency to their cloud experience. Furthermore, deploying multi-zone clusters will have minimal impact on performance, about 2 ms latency between availability zones.

An availability zone, according to IBM, is an isolated instance of a cloud inside a data center region. Each zone brings independent power, cooling, and networking to strengthen fault tolerance. While IBM Cloud already operates in nearly 60 locations, the new zones add even more capacity and capability in these key centers. This global cloud footprint becomes especially critical as clients look to gain greater control of their data in the face of tightening data regulations, such as the European Union’s new General Data Protection Regulation (GDPR). See DancingDinosaur June 1, IBM preps z world for GDPR.

In its Q1 earnings IBM reported cloud revenue of $17.7bn over the past year, up 22 percent over the previous year, but that includes two quarters of outstanding Z revenue that is unlikely to be sustained,  at least until the next Z comes out, which is at least a few quarters away.  AWS meanwhile reported quarterly revenues up 49 percent to $5.4 billion, while Microsoft recently reported 93 percent growth for Azure revenues.

That leaves IBM trying to catch up the old fashioned way by adding new cloud capabilities, enhancing existing cloud capabilities, and attracting more clients to its cloud capabilities however they may be delivered. For example, IBM announced it is the first cloud provider to let developers run managed Kubernetes containers directly on bare metal servers with direct access to GPUs to improve the performance of machine-learning applications, which is critical to any AI effort.  Along the same lines, IBM will extend its IBM Cloud Private and IBM Cloud Private for Data and middleware to Red Hat’s OpenShift Container Platform and Certified Containers. Red Hat already is a leading provider of enterprise Linux to Z shops.

IBM has also expanded its cloud offerings to support the widest range of platforms. Not just Z, LinuxONE, and Power9 for Watson, but also x86 and a variety of non-IBM architectures and platforms. Similarly, notes IBM, users have gotten accustomed to accessing corporate databases wherever they reside, but proximity to cloud data centers still remains important. Distance to data centers can have an impact on network performance, resulting in slow uploads or downloads.

Contrary to simplifying things, the propagation of more and different types of clouds and cloud strategies complicate an organization’s cloud approach. Already, today companies are managing complex, hybrid public-private cloud environments. At the same time, eighty percent of the world’s data is sitting on private servers. It just is not practical or even permissible in some cases to move all the data to the public cloud. Other organizations are run very traditional workloads that they’re looking to modernize over time as they acquire new cloud-native skills. The new IBM cloud centers can host data in multiple formats and databases including DB2, SQLBase, PostreSQL, or NoSQL, all exposed as cloud services, if desired.

The IBM cloud centers, the company continues, also promise common logging and services between the on-prem environment and IBM’s public cloud environment. In fact, IBM will make all its cloud services, including the Watson AI service, consistent across all its availability zones, and offer multi-cluster support, in effect enabling the ability to run workloads and do backups across availability zones.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Preps Z World for GDPR

June 1, 2018

Remember Y2K?  That was when calendars rolled over from the 1999 to 2000. It was hyped as an event that would screw up computers worldwide. Sorry, planes did not fall out of the sky overnight (or at all), elevators didn’t plummet to the basement, and hospitals and banks did not cease functioning. DancingDinosaur did OK writing white papers on preparing for Y2K. Maybe nothing bad happened because companies read papers like those and worked on changing their date fields.

Starting May 25, 2018 GDPR became the new Y2K. GRDP, the EC’s (or EU) General Data Protection Regulation (GDPR), an overhaul of existing EC data protection rules, promises to strengthen and unify those laws for EC citizens and organizations anywhere collecting and exchanging data involving its citizens. That is probably most of the readers of DancingDinosaur. GDRP went into effect at the end of May and generated a firestorm of trade business press but nothing near what Y2K did.  The primary GDPR objectives are to give citizens control over their personal data and simplify the regulatory environment for international business.

According to Bob Yelland, author of How it Works: GDPR, a Little Bee Book above, 50% of global companies  say they will struggle to meet the rules set out by Europe unless they make significant changes to how they operate, and this may lead many companies to appoint a Data Protection Officer, which the rules recommend. Doesn’t it feel a little like Y2K again?

The Economist in April wrote: “After years of deliberation on how best to protect personal data, the EC is imposing a set of tough rules. These are designed to improve how data are stored and used by giving more control to individuals over their information and by obliging companies to handle what data they have more carefully. “

As you would expect, IBM created a GDPR framework with five phases to help organizations achieve readiness: Assess, Design, Transform, Operate, and Conform. The goal of the framework is to help organizations manage security and privacy effectively in order to reduce risks and therefore avoid incidents.

DancingDinosaur is not an expert on GDPR in any sense, but from reading GDPR documents, the Z with its pervasive encryption and automated secure key management should eliminate many concerns. The rest probably can be handled by following good Z data center policy and practices.

There is only one area of GDPR, however, that may be foreign to North American organizations—the parts about respecting and protecting the private data of individuals.

As The Economist wrote: GDPR obliges organizations to create an inventory of the personal data they hold. With digital storage becoming ever cheaper, companies often keep hundreds of databases, many of which are long forgotten. To comply with the new regulation, firms have to think harder about data hygiene. This is something North American companies probably have not thought enough about.

IBM recommends you start by assessing your current data privacy situation under all of the GDPR provisions. In particular, discover where protected information is located in your enterprise. Under GDPR, individuals have rights to consent to access, correct, delete, and transfer personal data. This will be new to most North American data centers, even the best managed Z data centers.

Then, IBM advises, assess the current state of your security practices, identify gaps, and design security controls to plug those gaps. In the process find and prioritize security vulnerabilities, as well as any personal data assets and affected systems. Again, you will want to design appropriate controls. If this starts sounding a little too complicated just turn it over to IBM or any of the handful of other vendors who are racing GDPR readiness services into the market. IBM offers Data Privacy Consulting Services along with a GDPR readiness assessment.

Of course, you can just outsource it to IBM or others. IBM also offers its GDPR framework with five phases. The goal of the framework is to help organizations subject to GDPR manage security and privacy with the goal of reducing risks and avoiding problems.

GDPR is not going to be fun, especially the obligation to comply with each individual’s rights regarding their data. DancingDinosaur suspects it could even get downright ugly.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Is Your Enterprise Ready for AI?

May 11, 2018

According to IBM’s gospel of AI “we are in the midst of a global transformation and it is touching every aspect of our world, our lives, and our businesses.”  IBM has been preaching its gospel of AI of the past year or longer, but most of its clients haven’t jumped fully aboard. “For most of our clients, AI will be a journey. This is demonstrated by the fact that most organizations are still in the early phases of AI adoption.”

AC922 with NIVIDIA Tesla V100 and Enhanced NVLink GPUs

The company’s latest announcements earlier this week focus POWER9 squarely on AI. Said Tim Burke, Engineering Vice President, Cloud and Operating System Infrastructure, at Red Hat. “POWER9-based servers, running Red Hat’s leading open technologies offer a more stable and performance optimized foundation for machine learning and AI frameworks, which is required for production deployments… including PowerAI, IBM’s software platform for deep learning with IBM Power Systems that includes popular frameworks like Tensorflow and Caffe, as the first commercially supported AI software offering for [the Red Hat] platform.”

IBM insists this is not just about POWER9 and they may have a point; GPUs and other assist processors are taking on more importance as companies try to emulate the hyperscalers in their efforts to drive server efficiency while boosting power in the wake of declines in Moore’s Law. ”GPUs are at the foundation of major advances in AI and deep learning around the world,” said Paresh Kharya, group product marketing manager of Accelerated Computing at NVIDIA. [Through] “the tight integration of IBM POWER9 processors and NVIDIA V100 GPUs made possible by NVIDIA NVLink, enterprises can experience incredible increases in performance for compute- intensive workloads.”

To create an AI-optimized infrastructure, IBM announced the latest additions to its POWER9 lineup, the IBM Power Systems LC922 and LC921. Characterized by IBM as balanced servers offering both compute capabilities and up to 120 terabytes of data storage and NVMe for rapid access to vast amounts of data. IBM included HDD in the announcement but any serious AI workload will choke without ample SSD.

Specifically, these new servers bring an updated version of the AC922 server, which now features recently announced 32GB NVIDIA V100 GPUs and larger system memory, which enables bigger deep learning models to improve the accuracy of AI workloads.

IBM has characterized the new models as data-intensive machines and AI-intensive systems, LC922 and LC921 Servers with POWER9 processors. The AC922, arrived last fall. It was designed for the what IBM calls the post-CPU era. The AC922 was the first to embed PCI-Express 4.0, next-generation NVIDIA NVLink, and OpenCAPI—3 interface accelerators—which together can accelerate data movement 9.5x faster than PCIe 3.0 based x86 systems. The AC922 was designed to drive demonstrable performance improvements across popular AI frameworks such as TensorFlow and Caffe.

In the post CPU era, where Moore’s Law no longer rules, you need to pay as much attention to the GPU and other assist processors as the CPU itself, maybe even more so. For example, the coherence and high-speed of the NVLink enables hash tables—critical for fast analytics—on GPUs. As IBM noted at the introduction of the new machines this week: Hash tables are fundamental data structure for analytics over large datasets. For this you need large memory: small GPU memory limits hash table size and analytic performance. The CPU-GPU NVLink2 solves 2 key problems: large memory and high-speed enables storing the full hash table in CPU memory and transferring pieces to GPU for fast operations; coherence enables new inserts in CPU memory to get updated in GPU memory. Otherwise, modifications on data in CPU memory do not get updated in GPU memory.

IBM has started referring to the LC922 and LC921 as big data crushers. The LC921 brings 2 POWER9 sockets in a 1U form factor; for I/O it comes with both PCIe 4.0 and CAPI 2.0.; and offers up to 40 cores (160 threads) and 2TB RAM, which is ideal for environments requiring dense computing.

The LC922 is considerably bigger. It offers balanced compute capabilities delivered with the P9 processor and up to 120TB of storage capacity, again advanced I/O through PCIe 4.0/CAPI 2.0, and up to 44 cores (176 threads) and 2TB RAM. The list price, notes IBM is ~30% less.

If your organization is not thinking about AI your organization is probably in the minority, according to IDC.

  • 31 percent of organizations are in [AI] discovery/evaluation
  • 22 percent of organizations plan to implement AI in next 1-2 years
  • 22 percent of organizations are running AI trials
  • 4 percent of organizations have already deployed AI

Underpinning both servers is the IBM POWER9 CPU. The POWER9 enjoys a nearly 5.6x improved CPU to GPU bandwidth vs x86, which can improve deep learning training times by nearly 4x. Even today companies are struggling to cobble together the different pieces and make them work. IBM learned that lesson and now offers a unified AI infrastructure in PowerAI and Power9 that you can use today.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM Grows Quantum Ecosystem

April 27, 2018

It is good that you aren’t dying to deploy quantum computing soon because IBM readily admits that it is not ready for enterprise production now or in several weeks or maybe several months. IBM, however, continues to assemble the building blocks you will eventually need when you finally feel the urge to deploy a quantum application that can address a real problem that you need to resolve.

cryostat with prototype of quantum processor

IBM is surprisingly frank about the state of quantum today. There is nothing you can do at this point that you can’t simulate on a conventional or classical computer system. This situation is unlikely to change anytime soon either. For years to come, we can expect hybrid quantum and conventional compute environments that will somehow work together to solve very demanding problems, although most aren’t sure exactly what those problems will be when the time comes. Still at Think earlier this year IBM predicted quantum computing will be mainstream in 5 years.

Of course, IBM has some ideas of where the likely problems to solve will be found:

  • Chemistry—material design, oil and gas, drug discovery
  • Artificial Intelligence—classification, machine learning, linear algebra
  • Financial Services—portfolio optimization, scenario analysis, pricing

It has been some time since the computer systems industry had to build a radically different kind of compute discipline from scratch. Following the model of the current IT discipline IBM began by launching the IBM Q Network, a collaboration with leading Fortune 500 companies and research institutions with a shared mission. This will form the foundation of a quantum ecosystem.  The Q Network will be comprised of hubs, which are regional centers of quantum computing R&D and ecosystem; partners, who are pioneers of quantum computing in a specific industry or academic field; and most recently, startups, which are expected to rapidly advance early applications.

The most important of these to drive growth of quantum are the startups. To date, IBM reports eight startups and it is on the make for more. Early startups include QC Ware, Q-Ctrl, Cambridge Quantum Computing (UK), which is working on a compiler for quantum computing, 1Qbit based in Canada, Zapata Computing located at Harvard, Strangeworks, an Austin-based tool developer, QxBranch, which is trying to apply classical computing techniques to quantum, and Quantum Benchmark.

Startups get membership in the Q network and can run experiments and algorithms on IBM quantum computers via cloud-based access; provide deeper access to APIs and advanced quantum software tools, libraries, and applications; and have the opportunity to collaborate with IBM researchers and technical SMEs on potential applications, as well as with other IBM Q Network organizations. If it hasn’t become obvious yet, the payoff will come from developing applications that solve recognizable problems. Also check out QISKit, a software development kit for quantum applications available through GitHub.

The last problem to solve is the question around acquiring quantum talent. How many quantum scientists, engineers, or programmers do you have? Do you even know where to find them? The young people excited about computing today are primarily interested in technologies to build sexy apps using Node.js, Python, Jupyter, and such.

To find the people you need to build quantum computing systems you will need to scour the proverbial halls of MIT, Caltech, and other top schools that produce physicists and quantum scientists. A scan of salaries for these people reveals $135,000- $160,000, if they are available at all.

The best guidance from IBM on starting is to start small. The industry is still at the building block stage; not ready to throw specific application at real problems. In that case sign up for IBM’s Q Network and get some of your people engaged in the opportunities to get educated in quantum.

When DancingDinosaur first heard about quantum physics he was in a high school science class decades ago. It was intriguing but he never expected to even be alive to see quantum physics becoming real, but now it is. And he’s still here. Not quite ready to sign up for QISKit and take a small qubit machine for a spin in the cloud, but who knows…

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IT Security Enters the Cooperative Era

April 20, 2018

Ever hear of the cybersecurity tech accord?  It was  announced on Tuesday. Microsoft, Facebook, and 32 other companies signed aboard.  Absent from the signing were Apple, Alphabet and Amazon. Also missing was IBM. Actually, IBM was already at the RSA Conference making its own security announcement of an effort to help cybersecurity teams collaborate just like the attackers they’re defending against do via the dark web by sharing information among themselves.

IBM security control center

Tuesday’s Cybersecurity Tech Accord amounted to a promise to work together on cybersecurity issues. Specifically, the companies promise to work against state sponsored cyberattacks. The companies also agreed to collaborate on stronger defense systems and protect against the tampering of their products, according to published reports.

Giving importance to the accord is the financial impact of cybersecurity attacks on businesses and organizations, which is projected to reach $8 trillion by 2022. Other technology leaders, including Cisco, HP, Nokia, Oracle also joined the accord.

A few highly visible and costly attacks were enough to galvanize the IT leaders. In May, WannaCry ransomware targeted more than 300,000 computers in 150 countries, including 48 UK medical facilities. In a bid to help, Microsoft issued patches for old Windows systems, even though it no longer supports them, because so many firms run old software that was vulnerable to the attack, according to published reports. The White House attributed the attack to North Korea.

In June, NotPetya ransomware, which initially targeted computers in Ukraine before spreading, infected computers, locked down their hard drives, and demanded a $300 ransom to be paid in bitcoin. Even victims that paid weren’t able to recover their files, according to reports. The British government said Russia was behind the global cyberattack.

The Cybersecurity Tech Accord is modeled after a digital Geneva Convention, with a long-term goal of updating international law to protect people in times of peace from malicious cyberattacks, according to Microsoft president Brad Smith.

Github’s chief strategy officer Julio Avalos wrote in a separate blog post that “protecting the Internet is becoming more urgent every day as more fundamental vulnerabilities in infrastructure are discovered—and in some cases used by government organizations for cyberattacks that threaten to make the Internet a theater of war.” He continued: “Reaching industry-wide agreement on security principles and collaborating with global technology companies is a crucial step toward securing our future.”

Added Sridhar Muppidi, Co-CTO of IBM Security about the company’s efforts to help cybersecurity teams collaborate like the attackers they’re working against, in a recent published interview: The good guys have to collaborate with each other so that we can provide a better and more secure and robust systems. So we talk about how we share the good intelligence. We also talk about sharing good practices, so that we can then build more robust systems, which are a lot more secure.

It’s the same concept of open source model, where you provide some level of intellectual capital with an opportunity to bring in a bigger community together so that we can take the problem and solve it better and faster. And learn from each other’s mistakes and each other’s advancement so that it can help, individually, each of our offerings. So, end of the day, for a topic like AI, the algorithm is going to be an algorithm. It’s the data, it’s the models, it’s the set of things which go around it which make it very robust and reliable, Muppidi continued.

IBM appears to be practicing what it preaches by facilitating the collaboration of people and machines in defense of cyberspace. Last year at RSA, IBM introduced Watson to the cybersecurity industry to augment the skills of analysts in their security investigations. This year investments and artificial intelligence (AI), according to IBM, were made with a larger vision in mind: a move toward “automation of response” in cybersecurity.

At RSA, IBM also announced the next-generation IBM Resilient Incident Response Platform (IRP) with Intelligent Orchestration. The new platform promises to accelerate and sharpen incident response by seamlessly combining incident case management, orchestration, automation, AI, and deep two-way partner integrations into a single platform.

Maybe DancingDinosaur, which has spent decades acting as an IT-organization-of-one, can finally turn over some of the security chores to an intelligent system, which hopefully will do it better and faster.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Introduces Skinny Z Systems

April 13, 2018

Early this week IBM unveiled two miniaturized mainframe models, dubbed skinny mainframes, it said are easier to deploy in a public or private cloud facility than their more traditional, much bulkier predecessors. Relying on all their design tricks, IBM engineers managed to pack each machine into a standard 19-inch rack with space to spare, which can be used for additional components.

Z14 LinuxONE Rockhopper II, 19-inch rack

The first new mainframe introduced this week, also in a 19-inch rack, is the Z14 model ZR1. You can expect subsequent models to increment the model numbering.  The second new machine is the LinuxONE Rockhopper II, also in a 19-inch rack.

In the past, about a year after IBM introduced a new mainframe, say the z10, it was introduced what it called a Business Class (BC) version. The BC machines were less richly configured, less expandable but delivered comparable performance with lower capacity and a distinctly lower price.

In a Q&A analyst session IBM insisted the new machines would be priced noticeably lower, as were the BC-class machines of the past. These are not comparable to the old BC machines. Instead, they are intended to attract a new group of users who face new challenges. As such, they come cloud-ready. The 19-inch industry standard, single-frame design is intended for easy placement into existing cloud data centers alongside other components and private cloud environments.

The company, said Ross Mauri, General Manager IBM Z, is targeting the new machines toward clients seeking robust security with pervasive encryption, cloud capabilities and powerful analytics through machine learning. Not only, he continued, does this increase security and capability in on-premises and hybrid cloud environments for clients, IBM will also deploy the new systems in IBM public cloud data centers as the company focuses on enhancing security and performance for increasingly intensive data loads.

In terms of security, the new machines will be hard to beat. IBM reports the new machines capable of processing over 850 million fully encrypted transactions a day on a single system. Along the same lines, the new mainframes do not require special space, cooling or energy. They do, however, still provide IBM’s pervasive encryption and Secure Service Container technology, which secures data serving at a massive scale.

Ross continued: The new IBM Z and IBM LinuxONE offerings also bring significant increases in capacity, performance, memory and cache across nearly all aspects of the system. A complete system redesign delivers this capacity growth in 40 percent less space and is standardized to be deployed in any data center. The z14 ZR1 can be the foundation for an IBM Cloud Private solution, creating a data-center-in-a-box by co-locating storage, networking and other elements in the same physical frame as the mainframe server.  This is where you can utilize that extra space, which was included in the 19-inch rack.

The LinuxONE Rockhopper II can also accommodate a Docker-certified infrastructure for Docker EE with integrated management and scale tested up to 330,000 Docker containers –allowing developers to build high-performance applications and embrace a micro-services architecture.

The 19-inch rack, however, comes with tradeoffs, notes Timothy Green writing in The Motley Fool. Yes, it takes up 40% less floor space than the full-size Z14, but accommodates only 30 processor cores, far below the 170 cores supported by a full size Z14, , which fills a 24-inch rack. Both new systems can handle around 850 million fully encrypted transactions per day, a fraction of the Z14’s full capacity. But not every company needs the full performance and capacity of the traditional mainframe. For companies that don’t need the full power of a Z14 mainframe, notes Green, or that have previously balked at the high price or massive footprint of full mainframe systems, these smaller mainframes may be just what it takes to bring them to the Z. Now IBM needs to come through with the advantageous pricing they insisted they would offer.

The new skinny mainframe are just the latest in IBM’s continuing efforts to keep the mainframe relevant. It began over a decade ago with porting Linux to the mainframe. It continued with Hadoop, blockchain, and containers. Machine learning and deep learning are coming right along.  The only question for DancingDinosaur is when IBM engineers will figure out how to put quantum computing on the Z and squeeze it into customers’ public or private cloud environments.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.


%d bloggers like this: