Posts Tagged ‘mainframe’

IBM Leverages Strategic Imperatives to Win in Cloud

March 16, 2018

Some people may have been ready to count out IBM in the cloud. The company, however, is clawing its way back into contention faster than many imagined. In a recent Forbes Magazine piece, IBM credits 16,000 AI engagements, 400 blockchain engagements, and a couple of quantum computing pilots as driving its return as a serious cloud player.

IBM uses blockchain to win the cloud

According to Fortune, IBM has jumped up to third in cloud revenue with $17 billion, ranking behind Microsoft with $18.6 billion and Amazon, with $17.5. Among other big players, Google comes in seventh with $3 billion

In the esoteric world of quantum computing IBM is touting live projects underway with JPMorganChase, Daimler, and others. Bob Evans, a respected technology writer and now the principle of Evans Strategic Communications, notes that the latest numbers “underscore not only IBM’s aggressive moves into enterprise IT’s highest-potential markets,” but also the legitimacy of the company’s claims that it has joined the top ranks of the competitive cloud-computing marketplace alongside Microsoft and Amazon.

As reported in the Fortune piece, CEO Ginni Rometty, speaking to a quarterly analyst briefing, declared: “While IBM has a considerable presence in the public-cloud IaaS market because many of its clients require or desire that, it intends to greatly differentiate itself from the big IaaS providers via higher-value technologies such as AI, blockchain, cybersecurity and analytics.” These are the areas that Evans sees as driving IBM into the cloud’s top tier.

Rometty continued; “I think you know that for us the cloud has never been about having Infrastructure-as-a-Service-only as a public cloud, or a low-volume commodity cloud; Frankly, Infrastructure-as-a-Service is almost just a dialtone. For us, it’s always been about a cloud that is going to be enterprise-strong and of which IaaS is only a component.”

In the Fortune piece she then laid out four strategic differentiators for the IBM Cloud, which in 2017 accounted for 22% of IBM’s revenue:

  1. “The IBM Cloud is built for “data and applications anywhere,” Rometty said. “When we say you can do data and apps anywhere, it means you have a public cloud, you have private clouds, you have on-prem environments, and then you have the ability to connect not just those but also to other clouds. That is what we have done—all of those components.”
  2. The IBM Cloud is “infused with AI,” she continued, alluding to how most of the 16,000 AI engagements also involve the cloud. She cited four of the most-popular ways in which customers are using AI: customer service, enhancing white-collar work, risk and compliance, and HR.
  3. For securing the cloud IBM opened more than 50 cybersecurity centers around the world to ensure “the IBM Cloud is secure to the core,” Rometty noted.
  4. “And perhaps this the most important differentiator—you have to be able to extend your cloud into everything that’s going to come down the road, and that could well be more cyber analytics but it is definitely blockchain, and it is definitely quantum because that’s where a lot of new value is going to reside.”

You have to give Rometty credit: She bet big that IBM’s strategic imperatives, especially blockchain and, riskiest of all, quantum computing would eventually pay off. The company had long realized it couldn’t compete in high volume, low margin businesses. She made her bet on what IBM does best—advanced research—and stuck with it.  During those 22 consecutive quarters of revenue losses she stayed the course and didn’t publicly question the decision.

As Fortune observed: In quantum, IBM’s leveraging its first-mover status and has moved far beyond theoretical proposals. “We are the only company with a 50-qubit system that is actually working—we’re not publishing pictures of photos of what it might look like, or writings that say if there is quantum, we can do it—rather, we are scaling rapidly and we are the only one working with clients in development working on our quantum,” Rometty said.

IBM’s initial forays into commercial quantum computing are just getting started: JPMorganChase is working on risk optimization and portfolio optimization using IBM quantum computing;  Daimler is using IBM’s quantum technology to explore new approaches to logistics and self-driving car routes; and JSR is doing computational chemistry to create entirely new materials. None of these look like the payback is right around the corner. As DancingDinosaur wrote just last week, progress with quantum has been astounding but much remains to be done to get a functioning commercial ecosystem in place to support the commercialization of quantum computing for business on a large scale.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at and here.

Dinosaurs Strike Back in IBM Business Value Survey

March 2, 2018

IBM’s Institute of Business Value (IBV) recently completed a massive study based 12,000 interviews of executives of legacy c-suite companies. Not just CEO and CIO but COO, CFO, CMO, and more, including the CHO. The CHO is the Chief Happiness Officer. Not sure what a CHO actually does but if one had been around when DancingDinosaur was looking for a corporate job he might have stayed on the corporate track instead of pursuing the independent analyst/writer dream.

(unattributed IBM graphic)

IBV actually referred to the study as “Incumbents strike back.” The incumbents being the legacy businesses the c-suite members represent. In a previous c-suite IBV study two years ago, the respondents expressed concern about being overwhelmed and overrun by new upstart companies, the born-on-the-web newcomers. In many ways the execs at that time felt they were under attack.

Spurred by fear, the execs in many cases turned to a new strategy that takes advantage of what has always been their source of strength although they often lacked the ways and means to take advantage of that strength; the huge amounts of data they have gathered and stored, for decades in some cases. With new cognitive systems now able to extract and analyze this legacy data and combine it with new data, they could actually beat some of the upstarts. Finally, they could respond like nimble, agile operations, not the lumbering dinosaurs as they were often portrayed.

“Incumbents have become smarter about leveraging valuable data, honing their employees’ skills, and in some cases, acquired possible disruptors to compete in today’s digital age,” the study finds, according to CIO Magazine, which published excerpts from the study here. The report reveals 72 percent of surveyed CxOs claimed the next wave of disruptive innovation will be led by the incumbents who pose a significant competitive threat to new entrants and digital players. By comparison, the survey found only 22 percent of respondents believe smaller companies and start-ups are leading disruptive change. This presents a dramatic reversal from a similar but smaller IBV survey two years ago.

Making possible this reversal is not only growing awareness among c-level execs of the value of their organizations’ data and the need to use it to counter the upstarts, but new technologies, approaches like DevOps, easier-to-use dev tools, the increasing adoption of Linux, and mainframes like the z13, z14, and LinuxONE, which have been optimized for hybrid and cloud computing.  Also driving this is the emergence of platform options as a business strategy.

The platform option may be the most interesting decision right now. To paraphrase Hamlet, to be (a platform for your industry) or not to be. That indeed is a question many legacy businesses will need to confront. When you look at platform business models, what is right for your organization. Will you create a platform for your industry or piggyback on another company’s platform? To decide you need to first understand the dynamics of building and operating a platform.

The IBV survey team explored that question and found the respondents pretty evenly divided with 54% reporting they won’t while the rest expect to build and operate a platform. This is not a question that you can ruminate over endlessly like Hamlet.  The advantage goes to those who can get there first in their industry segment. Noted IBV, only a few will survive in any one industry segment. It may come down to how finely you can segment the market for your platform and still maintain a distinct advantage. As CIO reported, the IBV survey found 57 percent of disruptive organizations are adopting a platform business model.

Also rising in importance is the people-talent-skills issue. C-level execs have always given lip service to the importance of people as in the cliché people are our greatest asset.  Based on the latest survey, it turns out skills are necessary but not sufficient. Skills must be accompanied by the right culture. As the survey found:  Companies that have the right culture in place are more successful. In that case, the skills are just an added adrenalin shot. Still the execs put people skills in top three. The IBV analysts conclude: People and talent is coming back. Guess we’re not all going to be replaced soon with AI or cognitive computing, at least not yet.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at and here.

IBM Boosts DevOps with ADDI on Z

February 9, 2018

IBM’s Application Discovery and Delivery Intelligence (ADDI) is an analytical platform for application modernization. It uses cognitive technologies to analyze mainframe applications so you can quickly discover and understand interdependencies and impacts of change. You can use this intelligence to transform and renew these applications faster than ever. Capitalize on time-tested mainframe code to engage the API economy. Accelerate application transformation of your IBM Z hybrid cloud environment and more.

Formerly, ADDI was known as EZSource. Back then EZSource was designed to expedite digital transformations by unlocking core business logic and apps. Specifically it enabled the IT team to pinpoint specific mainframe code in preparation for leveraging IT through a hybrid cloud strategy. In effect it enabled the understanding business-critical assets in preparation of deployment of a z-centered hybrid cloud. This also enabled enterprise DevOps, which was necessary to keep up with the pace of changes overtaking existing business processes.

This wasn’t easy when EZSource initially arrived and it still isn’t although the intelligence built into ADDI makes it easier now.  Originally it was intended to help the mainframe data center team to:

  • Identify API candidates to play in the API economy
  • Embrace micro services to deliver versatile apps fast
  • Identify code quality concerns, including dead code, to improve reliability and maintainability
  • Mitigate risk of change through understanding code, data, and schedule interdependencies
  • Aid in sizing the change effort
  • Automate documentation to improve understanding
  • Reduce learning curve as new people came onboarded
  • Add application understanding to DevOps lifecycle information to identify opportunities for work optimization

Today, IBM describes Application Discovery and Delivery Intelligence (ADDI), its follow-up to EZSource, as an analytical platform for application modernization. It uses cognitive technologies to analyze mainframe applications so your team can quickly discover and understand interdependencies and impacts of any change. In theory you should be able to use this intelligence to transform and renew these applications more efficiently and productively. In short, it should allow you to leverage time-tested mainframe code to engage with the API economy and accelerate the application transformation on your IBM Z and hybrid cloud environment.

More specifically, it promises to enable your team to analyze a broad range of IBM and non-IBM programing languages, databases, workload schedulers, and environments. Enterprise application portfolios were built over decades using an ever-evolving set of technologies, so you need a tool with broad support, such as ADDI, to truly understand the relationships between application components and accurately determine the impacts of potential changes.

In practice, it integrates with mainframe environments and tools via a z/OS agent to automatically synchronize application changes. Without keeping your application analysis synchronized with the latest changes that your developers made, according to IBM, your analysis can get out of date and you risk missing critical changes.

In addition, it provides visual analysis integrated with leading IDEs. Data center managers are petrified of changing applications that still work, fearing they will inadvertently break it or slow performance. When modifying complex applications, you need to be able to quickly navigate the dependencies between application components and drill down to see relevant details. After you understand the code, you can then effectively modify it at much lower risk. The integration between ADDI and IBM Developer for z (IDz) combines the leading mainframe IDE with the application understanding and analytics capabilities you need to safely and efficiently modify the code.

It also, IBM continues, cognitively optimizes your test suites.  When you have a large code base to maintain and manyf tests to run, you must run the tests most optimally. ADDI correlates code coverage data and code changes with test execution records to enable you to identify which regression tests are the most critical, allowing you to optimize time and resources while reducing risk. It exposes poorly tested or complex code and empowers the test teams with cognitive insights that turns awareness of trends into mitigation of future risks.

Finally, ADDI intelligently identifies performance degradations before they hit production. It correlates runtime performance data with application discovery data and test data to quickly pinpoint performance degradation and narrow down the code artifacts to those that are relevant to the cause of bad performance. This enables early detection of performance issues and speeds resolution.

What’s the biggest benefit of ADDI on the Z? It enables your data center to play a central role in digital transformation, a phrase spoken by every c-level executive today as a holy mantra. But more importantly, it will keep your mainframe relevant.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.

Value and Power of LinuxOne Emperor II

February 4, 2018

There is much value n the mainframe but it doesn’t become clear until you do a full TCO analysis. When you talk to an IBMer about the cost of a mainframe the conversation immediately shifts to TCO, usually in the form of how many x86 systems you would have to deploy to handle a comparable workload with similar quality of service.  The LinuxONE Emperor II, introduced in September, can beat those comparisons.

LinuxONE Emperor II

Proponents of x86 boast about the low acquisition cost of x86 systems. They are right if you are only thinking about a low initial acquisition cost. But you also have to think about the cost of software for each low-cost core you purchase, and for many enterprise workloads you will need to acquire a lot of cores. This is where costs can mount quickly.

As a result, software will likely become the highest TCO item because many software products are priced per core.  Often the amount charged for cores is determined by the server’s maximum number of physical cores, regardless of whether they actually are activated. In addition, some architectures require more cores per workload. Ouch! An inexpensive device suddenly becomes a pricy machine when all those cores are tallied and priced.

Finally, x86 to IBM Z core ratios differ per workload, but x86 almost invariably requires more cores than a z-based workload; remember, any LinuxONE is a Z System. For example, the same WebSphere workload on x86 that requires 10 – 12 cores may require only one IFL on the Z. The lesson here: whether you’re talking about system software or middleware, you have to consider the impact of software on TCO.

The Emperor II delivers stunning specs. The machine can be packed with up to 170 cores, as much as 32 TB of memory, and 160 PCIe slots. And it is flexible; use this capacity, for instance, to add more system resources—cores or memory—to service an existing Linux instance or clone more Linux instances. Think of it as scale-out capabilities on steroids, taking you far beyond what you can achieve in the x86 world and do it with just a few keystrokes. As IBM puts it, you might:

  • Dynamically add cores, memory, I/O adapters, devices, and network cards without disruption.
  • Grow horizontally by adding Linux instances or grow vertically by adding resources (memory, cores, slots) to existing Linux guests.
  • Provision for peak utilization.
  • After the peak subsides automatically return unused resources to the resource pool for reallocation to another workload.

So, what does this mean to most enterprise Linux data centers? For example, IBM often cites a large insurance firm. The insurer needed fast and flexible provisioning for its database workloads. The company’s approach directed it to deploy more x86 servers to address growth. Unfortunately, the management of software for all those cores had become time consuming and costly. The company deployed 32 x86 servers with 768 cores running 384 competitor’s database licenses.

By leveraging elastic pricing on the Emperor II, for example, it only needed one machine running 63 IFLs serving 64 competitor’s database licenses.  It estimated savings of $15.6 million over 5 years just by eliminating charges for unused cores. (Full disclosure: these figures are provided by IBM; DancingDinosaur did not interview the insurer to verify this data.) Also, note there are many variables at play here around workloads and architecture, usage patterns, labor costs, and more. As IBM warns: Your results may vary.

And then there is security. Since the Emperor II is a Z it delivers all the security of the newest z14, although in a slightly different form. Specifically, it provides:

  • Ultimate workload isolation and pervasive encryption through Secure Service Containers
  • Encryption of data at rest without application change and with better performance than x86
  • Protection of data in flight over the network with full end-to-end network security
  • Use of Protected Keys to secure data without giving up performance
  • Industry-leading secure Java performance via TLS (2-3x faster than Intel)

BTW the Emperor II also anchors IBM’s Blockchain cloud service. That calls for security to the max. In the end. the Emperor II is unlike any x86 Linux system.

  • EAL 5+ isolation, best in class crypto key protection, and Secure Service Containers
  • 640 Power cores in its I/O channels (not included in the core count)
  • Leading I/O capacity and performance in the industry
  • IBM’s shared memory vertical scale architecture with a better architecture for stateful workloads like databases and systems of record
  • Hardware designed to give good response time even with 100% utilization, which simplifies the solution and reduces the extra costs x86 users assume are necessary because they’re used to keeping a utilization safety margin.

This goes far beyond TCO.  Just remember all the things the Emperor II brings: scalability, reliability, container-based security and flexibility, and more.

…and Go Pats!

DancingDinosaur is Alan Radding, a Boston-based veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.

IBM Halts Losing Quarterly Slide

January 25, 2018

With all respects to Casey at Bat author Ernest Thayer, joy may have returned to Mudville. IBM finally broke its 22 consecutive quarters losing streak and posted positive results in 4Q 17.  Fourth-quarter revenue of $22.5 billion, up 4 percent but that was just the start.

Watson and Weather Co. track flu

IBM is counting on its strategic imperatives to come through big and they did in 2017. Full-year strategic imperatives revenue of $36.5 billion, up 11 percent; represents 46 percent of IBM revenue. Similarly, IBM is making some gains in the highly competitive cloud business where IBM is fighting to position itself among the top ranks of formidable cloud players—Google, Amazon, and Microsoft. IBM did quite respectably in the cloud, posting $17 billion in cloud revenue, up 24 percent year to year.

DancingDinosaur readers will be interested to know that some of IBM’s various business segments, which have been a steady drain on IBM revenue turned things around in the 4th quarter. For example, Systems (systems hardware and operating systems software) saw revenues of $3.3 billion, up 32 percent driven by growth in IBM Z, Power Systems, and storage. That’s important to readers charged with planning their organization’s future with the Z or Power machines. They now can be confident that IBM mightn’t the sell the business tomorrow as it did with the x86 systems.

So where might IBM go in the future. “Our strategic imperatives revenue again grew at a double-digit rate and now represents 46 percent of our total revenue, and we are pleased with our overall revenue growth in the quarter.” said Ginni Rometty, IBM chairman, president, and CEO.  She then continued: “During 2017, we established IBM as the blockchain leader for business. Looking ahead, we are uniquely positioned to help clients use data and AI to build smarter businesses.”

Added James Kavanaugh, IBM CFO: “Over the past several years we have invested aggressively in technology and our people to reposition IBM.  2018 will be all about reinforcing IBM’s leadership position,” he continued, “in key high-value segments of the IT industry, including cloud, AI, security and blockchain.”

IBM has done well in some business and technology segments. Specifically, the company reported gains in revenues from analytics, up 9 percent, mobile, up 23 percent, and security, up a whopping 132 percent.

Other segments have not done as well. Technology Services & Cloud Platforms (includes infrastructure services, technical support services, and integration software) continue to lose money. A number of investment analysts are happy with IBM’s financials but are not optimistic about what they portend for IBM’s future.

For instance, Bert Hochfeld, long/short equity, growth, event-driven, research analyst, writes in Seeking Alpha, “the real reason why strategic imperatives and cloud showed relatively robust growth last quarter has nothing to do with IBM’s pivots and everything to do with the success of IBM’s mainframe cycle. IBM’s Z system achieved 71% growth last quarter compared to 62% in the prior quarter. New Z Systems are being delivered with pervasive encryption, they are being used to support hybrid cloud architectures, and they are being used to support Blockchain solutions… Right now, the mainframe performance is above the prior cycle (z13) and consistent with the z12 cycle a few years ago. And IBM has enjoyed some reasonable success with its all-flash arrays in the storage business. Further, the company’s superscalar offering, Power9, is having success and, as many of its workloads are used for AI, its revenues get counted as part of strategic initiatives. But should investors count on a mainframe cycle and a high-performance computer cycle in making a long-term investment decision regarding IBM shares?

He continued: “IBM management has suggested that some of the innovations in the current product range including blockchain, cryptography, security and reliability will make this cycle different, and perhaps longer, then other cycles. The length of the mainframe cycle is a crucial component in management’s earnings estimate. It needs to continue at elevated levels at least for another couple of quarters. While that is probably more likely, is it really prudent to base an investment judgement on the length of a mainframe cycle?

Of course, many DancingDinosaur readers are basing their career and employment decisions on the mainframe or Power Systems. Let’s hope this quarter’s success encourages them; it sure beats 22 consecutive quarters of revenue declines.

Do you remember how Thayer’s poem ends? With the hopes and dreams of Mudville riding on him, it is the bottom of the 9th; Casey takes a mighty swing and… strikes out! Let’s hope this isn’t IBM.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.

Compuware Brings Multi-Platform DevOps to the Z

January 19, 2018

The rush has started to DevOps for Z. IBM jumped on the bandwagon with an updated release of IBM Developer for z Systems (IDz) V14.1.1, which allows Z organizations to provide new capabilities and product maintenance to users sooner than the traditional release models they previously used from IBM.

Even more recently, Compuware, which described DevOps and the mainframe as the ultimate win-win, announced a program to advance DevOps on the mainframe with integrated COBOL code coverage metrics for multi-platform DevOps.  This will make it possible for all developers in the organization to fluidly handle multi-platform code, including mainframe code, in a fast delivery DevOps approach.

SonarSource-Compuware DevOps Dashboard

The new Compuware-SonarSource integrations are expected to ease enterprise DevOps teams trying to track and validate code coverage of COBOL application testing and do it with the same ease and employing the same processes as they do with Java and other more mainstream code. This ability to automate code coverage tracking across platforms is yet another example of empowering enterprise IT to apply the same proven and essential Agile, DevOps and Continuous Integration/Continuous Delivery (CI/CD) disciplines to both core systems-of-record (mainframe) as well as systems-of-engagement (mostly distributed systems).

Code coverage metrics promise insight into the degree to which source code is executed during a test. It identifies  which lines of code have been executed, and what percentage of an application has been tested. These measurements allow IT teams to understand the scope and effectiveness of its testing as code is moved towards production.

DevOps has become increasingly critical to mainframe shops that risk becoming irrelevant and even replaceable if they cannot turn around code improvements fast enough. The mainframe continues to be valued as the secure repository of the organization’s critical data but that won’t hold off those who feel the mainframe is a costly extravagance, especially when mainframe shops can’t turn out code updates and enhancements as fast as systems regarded as more inherently agile.

As Compuware puts it, the latest integrations automatically feed code coverage results captured by its Topaz for Total Test into SonarSource’s SonarQube. This gives DevOps teams an accurate, unified view of quality metrics and milestones across platforms enterprise-wide.

For z shops specifically, such continuous code quality management across platforms promises high value to large enterprises, enabling them to bring new digital deliverables to market, which increasingly is contingent on simultaneously updating code across both back-end mainframe systems-of-record and front-end mobile/web and distributed systems-of-engagement.

Specifically, notes Compuware, integration between Topaz for Total Test and SonarQube enables DevOps teams to:

  • Gain insight into the coverage of code being promoted for all application components across all platforms
  • Improve the rigor of digital governance with strong enforcement of mainframe QA policies for coding errors, data leakage, credential vulnerabilities, and more
  • Shorten feedback loops to speed time-to-benefit and more promptly address shortfalls in COBOL skills and bottlenecks in mainframe DevOps processes

Topaz for Total Test captures code coverage metrics directly from the source code itself, rather than from a source listing, as is the case with outdated mainframe tools. This direct capture is more accurate and eliminates the need for development, Compuware reported.

The new integration actually encompasses a range of tools and capabilities. For instance:

From within a Compuware Xpediter debug session, a developer can kick off a Compuware Topaz for Total Test automated unit test and set it up to collect code coverage info as it runs. Code coverage metrics then can be automatically fed into SonarSource’s SonarQube where they can be displayed in a dashboard along with other quality metrics, such as lines going to subprograms.

It also integrates with Jenkins as a Continuous Integration (CI) platform, which acts as a process orchestrator and interacts with an SCM tool, such as Compuware ISPW, which automates software quality checks and pushes metrics onto SonarQube among other things. ISPW also is where code gets promoted to the various stages within the lifecycle and ultimately deployed. Finally Topaz is Compuware’s Eclipse-based IDE from which developers drive all these activities.

The Compuware announcement further delivers on its promise to mainstream the mainframe; that is, provide a familiar, modern, and intuitive multi-platform mainframe development environment—integrated with state-of-the-art DevOps tools for veteran mainframe developers and, more importantly, those newly engaged as IT newbies from the distributed world. In short, this is how you keep your Z relevant and invaluable going forward.

** Special note regarding last week’s DancingDinosaur reporting on chip problems here; Don’t count on an immediate solution coming from the vendors anytime soon; not Google, IBM, Intel, AMD, ARM, or others. The word among chip geeks is that the dependencies are too complex to be fully fixed with a patch. This probably requires new chip designs and fabrication. DancingDinosaur will keep you posted.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.

Meltdown and Spectre Attacks Require IBM Mitigation

January 12, 2018

The chip security threats dubbed Meltdown and Spectre revealed last month apparently will require IBM threat mitigation in the form of code and patching. IBM has been reticent to make a major public announcement, but word finally is starting to percolate publicly.

Courtesy: Preparis Inc.

On January 4, one day after researchers disclosed the Meltdown and Spectre attack methods against Intel, AMD and ARM processors the Internet has been buzzing.  Wrote Eduard Kovacs on Wed.; Jan. 10, IBM informed customers that it had started analyzing impact on its own products. The day before IBM revealed its POWER processors are affected.

A published report from Virendra Soni, January 11, on the Consumer Electronics Show (CES) 2018 in Las Vegas where Nvidia CEO Jensen Huang revealed how the technology leaders are scrambling to find patches to the Spectre and Meltdown attacks. These attacks enable hackers to steal private information off users’ CPUs running processors from Intel, AMD, and ARM.

For DancingDinosaur readers, that puts the latest POWER chips and systems at risk. At this point, it is not clear how far beyond POWER systems the problem reaches. “We believe our GPU hardware is immune. As for our driver software, we are providing updates to help mitigate the CPU security issue,” Nvidia wrote in their security bulletin.

Nvidia also reports releasing updates for its software drivers that interact with vulnerable CPUs and operating systems. The vulnerabilities take place in three variants: Variant 1, Variant 2, and Variant 3. Nvidia has released driver updates for Variant 1 and 2. The company notes none of its software is vulnerable to Variant 3. Nvidia reported providing security updates for these products: GeForce, Quadro, NVS Driver Software, Tesla Driver Software, and GRID Driver Software.

IBM has made no public comments on which of their systems are affected. But Red Hat last week reported IBM’s System Z, and POWER platforms are impacted by Spectre and Meltdown. IBM may not be saying much but Red Hat is, according to Soni: “Red Hat last week reported that IBM’s System Z, and POWER platforms are exploited by Spectre and Meltdown.”

So what is a data center manager with a major investment in these systems to do?  Meltdown and Spectre “obviously are a very big problem, “ reports Timothy Prickett Morgan, a leading analyst at The Last Platform, an authoritative website following the server industry. “Chip suppliers and operating systems and hypervisor makers have known about these exploits since last June, and have been working behind the scenes to provide corrective countermeasures to block them… but rumors about the speculative execution threats forced the hands of the industry, and last week Google put out a notice about the bugs and then followed up with details about how it has fixed them in its own code. Read it here.

Chipmakers AMD and AMR put out a statement saying only Variant 1 of the speculative execution exploits (one of the Spectre variety known as bounds check bypass), and by Variant 2 (also a Spectre exploit known as branch target injection) affected them. AMD, reports Morgan, also emphasized that it has absolutely no vulnerability to Variant 3, a speculative execution exploit called rogue data cache load and known colloquially as Meltdown.  This is due, he noted, to architectural differences between Intel’s X86 processors and AMD’s clones.

As for IBM, Morgan noted: its Power chips are affected, at least back to the Power7 from 2010 and continuing forward to the brand new Power9. In its statement, IBM said that it would have patches out for firmware on Power machines using Power7+, Power8, Power8+, and Power9 chips on January 9, which passed, along with Linux patches for those machines; patches for the company’s own AIX Unix and proprietary IBM i operating systems will not be available until February 12. The System z mainframe processors also have speculative execution, so they should, in theory, be susceptible to Spectre but maybe not Meltdown.

That still leaves a question about the vulnerability of the IBM LinuxONE and the processors spread throughout the z systems. Ask your IBM rep when you can expect mitigation for those too.

Just patching these costly systems should not be sufficiently satisfying. There is a performance price that data centers will pay. Google noted a negligible impact on performance after it deployed one fix on Google’s millions of Linux systems, said Morgan. There has been speculation, Googled continued, that the deployment of KPTI (a mitigation fix) causes significant performance slowdowns. As far as is known, there is no fix for Spectre Variant 1 attacks, which have to be fixed on a binary-by-binary basis, according to Google.

Red Hat went further and actually ran benchmarks. The company tested its Enterprise Linux 7 release on servers using Intel’s “Haswell” Xeon E5 v3, “Broadwell” Xeon E5 v4, and “Skylake,” the upcoming Xeon SP processors, and showed impacts that ranged from 1-19 percent. You can demand these impacts be reflected in reduced system prices.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.


Syncsort Survey Unveils 5 Ways Z Users Are Saving Money

January 9, 2018

Syncsort Inc. recently completed its year-end 2017 State-of-the-Mainframe annual survey of IT professionals. Over In the past year, the organizations surveyed increased their spending for mainframe capacity, new mainframe applications, and mainframe data analytics. The IBM z/OS mainframe remains an important focus in organizations, with the majority of respondents reporting that the mainframe serves as the hub for business-critical applications by providing high-volume transaction and database processing.

More interestingly, Syncsort notes high number of respondents indicated they’ll use the mainframe to run revenue-generating services over the next 12 months, another clear indication that the mainframe remains integral to the business.

However, the survey also reflects concerns over the high cost of the mainframe. In effect, mainframe optimization, cost reduction, and spending remain at the forefront, with many organizations looking to leverage zIIP engines to offload general processor cycles, which maximize resources, delays or avoids hardware upgrades, and lowers monthly software charges.

At the same time some organizations are looking at mainframe optimization to fund strategic projects, such as enhanced mainframe data analytics to support better business decisions for meeting SLAs as well as security and compliance initiatives. All of this may relieve pressure to jump to a lower cost platform (x86) in the hope of reducing spending.

But apparently it is not enough in a number of cases. Despite the focus on optimization, the survey notes, nearly 20% of respondents plan to move off the mainframe completely in 2018. DancingDinosaur, however spent decades writing mainframe-is-dead pieces and this invariably takes longer, costs more, often much more, than expected, and sometimes is never fully achieved. The cost of building a no-fail, scalable, and secure business platform has proven to be extremely difficult.

However costly as the mainframe is, you can get it up running dependably for less than you will end up paying to cobble together bare metal x86 boxes. But if you try, please let me know and I will check back with you next year to publicize your success. One exception might be if you opt for a 100% cloud solution; again, let me know if it works and how much you save; I’ll make you a hero.

In the meantime, here are five ways respondents expect to save money by streamlining operations through mainframe-based optimization:

  1. This year organizations aim to redirect budget dollars to strategic projects such as mainframe data analytics. Optimization will primarily focus on general processor usage by leveraging zIIP engines and using MSU optimization tools. Some organizations will take it a step further, and target some candidate workloads to be moved off of the mainframe (possibly to a hybrid cloud) to ensure sufficient capacity remains for business critical applications.
  1. Big data analytics for operational intelligence, security, and compliance will continue to grow and emerge as a critical effort, and ensuring that IT services are delivered effectively to meet SLAs. Mainframe data sources will be critical in helping to address these challenges.
  1. Integration of mainframe data with modern analytics tools will become pervasive and critically important as organizations look to exploit this abundance of information for enhanced visibility. Integrating mainframe machine data will not only provide enhanced visualization but will enable correlation with data sources from other platforms. Additionally, new analytics technologies, like Splunk, will make mainframe application data more readily available to business analysts who typically aren’t mainframe experts while addressing the diminishing pool of mainframe talent by putting rich, easy tools into the hands of newer staff.
  1. SMF and z/OS log data will play an increased role in addressing security exposures, fulfilling audit requirements, and addressing compliance mandates, a key initiative for IT executives and IT organizations. Here think pervasive encryption on Z. Overall, organizations are looking at leveraging analytics platforms for security and compliance. Along with SMF and other z/OS log data they will look to Splunk, Elastic, and Hadoop.
  1. Data movement across the variety of platforms in distributed enterprises presents important challenges that must be secured, monitored, and performed efficiently. With over half of mainframe organizations still lacking full visibility this must become a priority for organizations.

Over the years, DancingDinosaur writes up every opportunity to lower mainframe costs or optimize operations. Find some of these here, here, and here.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.

IBM Q Network Promises to Commercialize Quantum

December 14, 2017

The dash to quantum computing is well underway and IBM is preparing to be one of the leaders. When IBM gets there it will find plenty of company. HPE, Dell/EMC, Microsoft and more are staking out quantum claims. In response IBM is speeding the build-out of its quantum ecosystem, the IBM Q Network, which it announced today.

IBM’s 50 qubit system prototype

Already IBM introduced its third generation of quantum computers in Nov., a prototype 50 qubit system. IBM promises online access to the IBM Q systems by the end of 2017, with a series of planned upgrades during 2018. IBM is focused on making available advanced, scalable universal quantum computing systems to clients to explore practical applications.

Further speeding the process, IBM is building a quantum computing ecosystem of big companies and research institutions. The result, dubbed IBM Q Network, will consist of a worldwide network of individuals and organizations, including scientists, engineers, business leaders, and forward thinking companies, academic institutions, and national research labs enabled by IBM Q. Its mission: advancing quantum computing and launching the first commercial applications.

Two particular goals stand out: Engage industry leaders to combine quantum computing expertise with industry-oriented, problem-specific expertise to accelerate development of early commercial uses. The second: expand and train the ecosystem of users, developers, and application specialists that will be essential to the adoption and scaling of quantum computing.

The key to getting this rolling is the groundwork IBM laid with the IBM Q Experience, which IBM initially introduced in May of 2016 as a 5 cubit system. The Q Experience (free) upgrade followed with a 16-qubit upgrade in May, 2017. The IBM effort to make available a commercial universal quantum computer for business and science applications has increased with each successive rev until today with a prototype 50 cubit system delivered via the IBM Cloud platform.

IBM opened public access to its quantum processors over a year ago  to serve as an enablement tool for scientific research, a resource for university classrooms, and a catalyst for enthusiasm. Since then, participants have run more than 1.7M quantum experiments on the IBM Cloud.

To date IBM was pretty easy going about access to the quantum computers but now that they have a 20 cubit system and 50 cubit system coming the company has become a little more restrictive about who can use them. Participation in the IBM Q Network is the only way to access these advanced systems, which involves a commitment of money, intellectual property, and agreement to share and cooperate, although IBM implied at any early briefing that it could be flexible about what was shared and what could remain an organization’s proprietary IP.

Another reason to participate in the Quantum Experience is QISKit, an open source quantum computing SDK anyone can access. Most DancingDinosaur readers, if they want to participate in IBM’s Q Network will do so as either partners or members. Another option, a Hub, is really targeted for bigger, more ambitious early adopters. Hubs, as IBM puts it, provide access to IBM Q systems, technical support, educational and training resources, community workshops and events, and opportunities for joint work.

The Q Network has already attracted some significant interest for organizations at every level and across a variety of industry segments. These include automotive, financial, electronics, chemical, and materials players from across the globe. Initial participants include JPMorgan Chase, Daimler AG, Samsung, JSR Corporation, Barclays, Hitachi Metals, Honda, Nagase, Keio University, Oak Ridge National Lab, Oxford University, and University of Melbourne.

As noted at the top, other major players are staking out their quantum claims, but none seem as far along or as comprehensive as IBM:

  • Dell/EMC is aiming to solve complex, life-impacting analytic problems like autonomous vehicles, smart cities, and precision medicine.
  • HPE appears to be focusing its initial quantum efforts on encryption.
  • Microsoft, not surprisingly, expects to release a new programming language and computing simulator designed for quantum computing.

As you would expect, IBM also is rolling out IBM Q Consulting to help organizations envision new business value through the application of quantum computing technology and provide customized roadmaps to help enterprises become quantum-ready.

Will quantum computing actually happen? Your guess is as good as anyone’s. I first heard about quantum physics in high school 40-odd years ago. It was baffling but intriguing then. Today it appears more real but still nothing is assured. If you’re willing to burn some time and resources to try it, go right ahead. Please tell DancingDinosaur what you find.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at and here.

%d bloggers like this: