Posts Tagged ‘OpenStack’

IBM z System and Power Fuel Hybrid Cloud

September 30, 2016

DancingDinosaur has been cheerleading the z as a cloud player since 2011 and even before, mainly as an ideal vehicle for private clouds. So it should be no surprise to readers that last week IBM announced z and Power cloud-ready systems, services, and solutions for the hybrid cloud environment. My only question: What took them so long?

hybrid-cloud-systems

Power and z accelerate transformation to hybrid cloud

The world, indeed, is changing fast, and IT data centers especially have to scramble to keep up as they try to blend public cloud, private cloud, and traditional IT data centers and integrate it all seamlessly. “Today’s business environment is very dynamic and filled with disruption. A hybrid cloud model enables clients to continuously adapt while also optimizing on-premises investments and delivering the flexibility clients need across IBM Systems and the cloud,” according to Tom Rosamilia, senior vice president, IBM Systems.

At the heart of the IBM’s systems for what it calls the hybrid cloud era are three technologies we should be generally already familiar:

  • z Systems for cloud. IBM z Systems Operational Insights is a new SaaS-based offering that provides analytic insights on cloud operations for new levels of efficiency and application performance. It allows users to make better business and application decisions based on trends and embedded expertise on performance data through a GUI dashboard. This accompanies IBM OMEGAMON Application Performance Management, which provides quick identification of problem components through end-to-end visibility for clients’ hybrid workloads that include z Systems applications.  In addition, the newly available IBM Common Data Provider enables z Systems operational data to be efficiently consumed in near real time by the clients’ cloud or local enterprise operational analytics platform. An OK start, but you can quibble with OMEGAMON as IBM’s performance analysis and management choice. At its core, this is old technology. DancingDinosaur would prefer, say, Watson.
  • Power Systems for cloud. With integrated OpenStack-based cloud management and elastic consumption models, according to IBM, these new enterprise-class IBM Power Systems enable organizations to transform their IT infrastructure to a local cloud for AIX, IBM i and Linux workloads and extend them with rapid access to compute services in the IBM Cloud. DancingDinosaur covered the new LC here.
  • IBM Spectrum Copy Data Management and Protect. This brings a new solution that drives operational and development agility and efficiency across new and traditional applications that allow detailed, easy management of data copies.  Additionally, IBM Spectrum Protect has expanded its extensive hybrid cloud solution integration with cloud object storage options for use in hybrid cloud deployments.

About the only thing missing above is LinuxONE but that will come up below when IBM gets to openness, which is critical to hybrid clouds. In its announcement, IBM also promised a series of new and expanded collaborations with IBM Systems for hybrid cloud environments, including:

  • Canonical: Canonical and IBM are extending their ongoing alliance to make Ubuntu OpenStack available today on LinuxONE, z Systems, Power Systems, and OpenPOWER-based systems, including the new line of LC servers. This enables organizations to leverage Canonical’s portfolio across the three platforms with simplified and automated OpenStack management.
  • Hortonworks: IBM and Hortonworks,  a Hadoop platform, are jointly entering the marketplace to make Hortonworks Hadoop distribution available on POWER. Whoopee, Hadoop already runs native on z.
  • Mirantis: Mirantis and IBM are collaborating to develop reference architectures enabling Mirantis OpenStack to manage compute nodes hosted on IBM Power Systems servers, and to validate a host of core applications to run its OpenStack private cloud. With this integration, Mirantis will now bring its OpenStack based private cloud management to the POWER platform. This enables organizations to leverage the efficiency of IBM Power Systems for data-driven workloads in a seamless and compatible way for their data center through Mirantis’ OpenStack cloud management.
  • NGINX: NGINX’s application delivery platform now supports servers based on IBM’s POWER architecture with the latest release of its commercial load balancer and web accelerator software, NGINX Plus R10. The combination of NGINX Plus and POWER brings new agility to enterprises, allowing them to scale their infrastructure and application delivery solutions across any environment – public, private, and hybrid cloud; containers; and bare metal – providing a consistent user experience.
  • Red Hat: Red Hat and IBM are expanding their long-standing alliance to better help organizations embrace hybrid cloud. Through joint engineering and deeper product collaboration, the two companies plan to deliver solutions built on key components of Red Hat’s portfolio of open source products, including Red Hat Enterprise Linux, (RHEL)., By the way, RHEL is the #2 Linux distro on the z. RHEL also enables IBM Power Systems as a featured component of Red Hat’s hybrid cloud strategy spanning platform infrastructure located both on and off an enterprise’s premises.

There is enough openness to enable you to do what you need so DancingDinosaur has no real complaints with IBM’s choices above. Just wish it was more z- and LinuxONE-centric.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer and mainframe bigot. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM’s Strategic Initiatives Gain New All-Flash Storage

May 6, 2016

Flash storage must be the latest rage among enterprise storage vendors.  Last week IBM introduced three new all-flash storage arrays, driving down latency and price/gigabyte to unheard of levels (minimum latency of 250μs, all-flash storage as low as $1.50 per gigabyte). Earlier this week EMC announced new all-flash arrays for its Unity series at prices under $18,000 (under $10,000 for hybrid arrays.) Flash storage has long beaten hard disk in terms of cost per IOPS, but now it is rivaling hard disk in terms of cost/gigabyte.

IBM_Flash_2015_1259-C-no_shadow_A9000GlamShot2

IBM A9000 All-Flash Array

OK, it looks a little—uh—boxy to say the least. But the new FlashSystem A9000 is packed with storage goodies. It comes fully configured, which helps drive down the cost of implementing an all-flash environment. Its sister, the FlashSystem A9000R, brings a grid architecture that provides for easy scaling up to the petabyte range. Both FlashSystems incorporate data reduction features, including pattern removal, deduplication and real-time compression, as well as IBM FlashCore technology to deliver consistent low latency performance. As noted above, they are priced as low as $1.50 per gigabyte.

Driving IBM’s latest interest in flash storage are its strategic initiatives, start with cloud computing. Consumers today, notes IBM, are demanding cloud-based applications that are fast, easy, and intelligent. That means minimal latency. Cloud users are demanding sub-second response times, especially when accessing critical data. They also are demanding cloud providers deliver a unique, personalized, and positive customer experience.

To deliver this, IBM is turning to hardware innovation, specifically its MicroLatency technology, to transfers data within the flash array instead of adding another layer of software. MicroLatency technology inserts FPGAs (hardware) that connects and communicates directly with the flash and RAID controllers, eliminating the latency of software and even firmware. Instead, the FlashSystems lets hardware talk directly with hardware.

In addition, IBM is packing the new FlashSystem arrays with features designed to solve cloud requirements such as quality-of-service (QoS) to prevent the noisy neighbor problems with application performance. The new arrays also feature secure multi-tenancy, thresholding, and easy-to-deploy grid scale-out capabilities.

The z System platform is not being ignored in all of this. IBM is including a new DS model, the all-flash IBM DS 8888 optimized for enterprise-class servers: With the all-flash IBM DS8888, customer databases and data-intensive applications are accelerated, resulting in improved business performance and customer satisfaction.

Specifically, the DS888 brings faster decision making and improve customer serviceability, with 4x performance over previous generations and accelerated response time for mission critical applications. The flash storage delivers up to 2.5 million IOPS, the result of having been built on the Power8 processor. It also enables organizations to streamline operations through the performance of an all flash architected solution aligned to provide the deepest integration with System z environments. For instance, IBM promises the most robust FICON connectivity through an architecture optimized for mainframe’s 4K cache segments.

In addition, the DS8888 promises 24×7 access to data and applications through superior business continuity on high demand transaction processing workloads while delivering top operations performance through its all flash architecture. It goes beyond the usual high end 5-nines availability to deliver 6-nines availability, which translates into a mere 2.59 seconds of downtime per month.  Other availability features include flexible replication (IBM FlashCopy, Metro Mirror, Global Mirror, Metro/Global Mirror, Global Copy & Multiple Target Peer-to-Peer Remote Copy). In the early years of flash reliability and availability were a concern.  With the DS8888 and 6-nines availability it isn’t any more.

Finally, it comes with a smorgasbord of security and efficiency goodies, including self-encrypted flash drives, key interoperability management protocol, syslog protocol, an intuitive GUI (IBM has learned a few tricks from Apple), innovative storage software licensing, RESTful and OpenStack APIs to connect workloads between private and public clouds, and thin provisioning for maximum utilization and reclamation of capacity from deleted data.

All-flash solutions announced last week complement IBM’s existing all-flash portfolio including FlashSystem 900 and V9000 that also leverage IBM’s FlashCore technology. IBM’s midrange all-flash solutions consist of all-flash versions of IBM’s Storwize family, which offers the performance needed for real-time insights from business data combined with advanced management functions. IBM’s Big Data all-flash solution delivers high-density multi-petabyte scale and a low-cost flash option ideal for industries such as media, genomics, and life sciences.

DancingDinosaur used to be hired to write papers around the enterprise cost-performance tradeoffs between hard disk and SSD/flash. No matter how expensive flash was at whatever point, the cost per IOPS always favored flash and cost per gigabytes always favored hard disk. That’s no longer an analysis worth even making today.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

 

IBM Drives Platforms to the Cloud

April 29, 2016

IBM hasn’t been shy about its shift of focus from platforms and systems to cloud, mobile, analytics, and cognitive computing. But it didn’t hit home until last week’s release of 1Q2016 financials, which mentioned the z System just once. For the quarter IBM systems hardware and operating systems software revenues (lumped into one category, almost an after-thought) rang up $1.7 billion, down 21.8 percent.

This is ugly, and DancingDinosaur isn’t even a financial analyst. After the z System showed attractive revenue growth through all of 2015 suddenly its part of a loss. You can’t even find the actual numbers for z or Power in the new report format. As IBM notes: the company has revised its financial reporting structure to reflect the transformation of the business and provide investors with increased visibility into the company’s operating model by disclosing additional information on its strategic imperatives revenue by segment. BTW, IBM did introduce new advanced storage this week, which was part of the Systems Hardware loss too. DancingDinosaur will take up the storage story here next week.

openstack-logo

But the 1Q2016 report was last week. To further emphasize its shift IBM this week announced that it was boosting support of OpenStack’s RefStack project, which is intended to advance common language between clouds and facilitate interoperability across clouds. DancingDinosaur applauds that but if you are a z data center manager you better take note that the z along with all the IBM platforms, mainly Power and storage, being pushed to the back of the bus behind IBM’s strategic imperatives.

DancingDinosaur supports the strategic initiatives and you can throw blockchain and IoT in with them too. These initiatives will ultimately save the mainframe data center. All the transactions and data swirling around and through these initiatives eventually need to land in a safe, secure, utterly reliable place where they can be processed in massive volume, kept accessible, highly available, and protected for subsequent use, for compliance, and for a variety of other purposes. That place most likely will be the z data center. It might be on premise or in the cloud but if organizations need rock solid transaction performance, security, availability, scalability, and such they will want the z, which will do it better and be highly price competitive. In short, the z data center provides the ideal back end for all the various activities going on through IBM’s strategic initiative.

The z also has a clear connection to OpenStack. Two years ago IBM announced expanding its support of open technologies by providing advanced OpenStack integration and cloud virtualization and management capabilities across IBM’s entire server portfolio through IBM Cloud Manager with OpenStack. According to IBM, Cloud Manager with OpenStack will provide support for the latest OpenStack release, dubbed Icehouse at that time, and full access to the complete core OpenStack API set to help organizations ensure application portability and avoid vendor lock-in. It also extends cloud management support to the z, in addition to Power Systems, PureFlex/Flex Systems, System x (which was still around then)  or any other x86 environment. It also would provide support for IBM z/VM on the z, and PowerVC for PowerVM on Power Systems to add more scalability and security to its Linux environments.

At the same time IBM also announced it was beta testing a dynamic, hybrid cloud solution on the IBM Cloud Manager with OpenStack platform. That would allow workloads requiring additional infrastructure resources to expand from an on premise cloud to remote cloud infrastructure.  Since that announcement, IBM has only gotten more deeply enamored with hybrid clouds.  Again, the z data center should have a big role as the on premise anchor for hybrid clouds.

With the more recent announcement RefStack, officially launched last year and to which IBM is the lead contributor, becomes a critical pillar of IBM’s commitment to ensuring an open cloud – helping to advance the company’s long-term vision of mitigating vendor lock-in and enabling developers to use the best combination of cloud services and APIs for their needs. The new functionality includes improved usability, stability, and other upgrades, ensuring better cohesion and integration of any cloud workloads running on OpenStack.

RefStack testing ensures core operability across the OpenStack ecosystem, and passing RefStack is a prerequisite for all OpenStack certified cloud platforms. By working on cloud platforms that are OpenStack certified, developers will know their workloads are portable across IBM Cloud and the OpenStack community.  For now RefStack acts as the primary resource for cloud providers to test OpenStack compatibility, RefStack also maintains a central repository and API for test data, allowing community members visibility into interoperability across OpenStack platforms.

One way or another, your z data center will have to coexist with hybrid clouds and the rest of IBM’s strategic imperatives or face being displaced. With RefStack and the other OpenStack tools this should not be too hard. In the meantime, prepare your z data center for new incoming traffic from the strategic imperatives, Blockchain, IoT, Cognitive Computing, and whatever else IBM deems strategic next.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Ubuntu Linux (beta) for the z System is Available Now

April 8, 2016

As recently as February, DancingDinosaur has been lauding IBM’s bolstering of the z System for Linux and support for the latest styles of app dev. As part of that it expected Ubuntu Linux for z by the summer. It arrived early.  You can download it for LinuxONE and the z now, hereubuntu-logo-300x225

Of course, the z has run Linux for over a decade. That was a customized version that required a couple of extra steps, mainly recompiling, if x86 Linux apps were to run seamlessly. This time Canonical and the Ubuntu community have committed to work with IBM to ensure that Ubuntu works seamlessly with IBM LinuxONE, z Systems, and Power Systems. The goal is to enable IBM’s enterprise platforms to play nicely with the latest app dev goodies, including NFV, containers, KVM, OpenStack, big data analytics, DevOps, and even IoT. To that end, all three parties (Canonical, the Ubuntu community, and IBM) commit to provide reference architectures, supported solutions, and cloud offerings, now and in the future.

Ubuntu is emerging as the platform of choice for organizations running scale-out, next-generation workloads in the cloud. According to Canonical, Ubuntu dominates public cloud guest volume and production OpenStack deployments with up to 70% market share. Global brands running Ubuntu at scale in the cloud include AT&T, Walmart, Deutsche Telecom, Bloomberg, Cisco and others.

The z and LinuxONE machines play right into this. They can support thousands of Linux images with no-fail high availability, security, and performance. When POWER 9 processors come to market it gets even better. At a recent OpenPOWER gathering the POWER 9 generated tremendous buzz with Google discussing its intentions of building a new data center server  based on an open POWER9 design that conforms to Facebook’s Open Compute Project server.

These systems will be aimed initially at hyperscale data centers. OpenPOWER processors combined with acceleration technology have the potential to fundamentally change server and data center design today and into the future.  OpenPOWER provides a great platform for the speed and flexibility needs of hyperscale operators as they demand ever-increasing levels of scalability.

According to Aaron Sullivan, Open Compute Project Incubation Committee Member and Distinguished Engineer at Rackspace. “OpenPOWER provides a great platform for the speed and flexibility needs of hyperscale operators as they demand ever-increasing levels of scalability.” This is true today and with POWER9, a reportedly 14nm processor coming around 2017, it will be even more so then. This particular roadmap looks out to 2020 when POWER10, a 10nm processor, is expected with the task of delivering extreme analytics optimization.

But for now, what is available for the z isn’t exactly chopped liver. Ubuntu is delivering scale-out capabilities for the latest development approaches to run on the z and LinuxONE. As Canonical promises: Ubuntu offers the best of open source for IBM’s enterprise customers along with unprecedented performance, security and resiliency. The latest Ubuntu version, Ubuntu 16.04 LTS, is in beta and available to all IBM LinuxOne and z Systems customers. See the link above. Currently SUSE and Red Hat are the leading Linux distributions among z data centers. SUSE also just announced a new distro of openSUSE Linux for the z to be called openSUSE Factory.

Also this week the OpenPOWER Foundation held its annual meeting where it introduced technology to boost data center infrastructures with more choices, essentially allowing increased data workloads and analytics to drive better business results. Am hoping that the Open Mainframe Project will emulate the Open POWER group and in a year or two by starting to introducing technology to boost mainframe computing along the same lines.

For instance OpenPOWER introduced more than 10 new OpenPOWER servers, offering expanded services for high performance computing and server virtualization. Or this: IBM, in collaboration with NVIDIA and Wistron, revealed plans to release its second-generation OpenPOWER high performance computing server, which includes support for the NVIDIA Tesla Accelerated Computing platform. The server will leverage POWER8 processors connected directly to the new NVIDIA Tesla P100 GPU accelerators via the NVIDIA NVLink, a high-speed interconnect technology.

In the same batch of announcements TYAN announced its GT75-BP012, a 1U, POWER8-based server solution with the ppc64 architecture. The ppc64 architecture is optimized for 64-bit big-endian PowerPC and Power Architecture processors.  Also of interest to DancingDinosaur readers may be the variation of the ppc64 that enables a pure little-endian mode with the POWER8 to enable the porting of x86 Linux-based software with minimal effort. BTW, the OpenPOWER-based platform, reportedly, offers exceptional capability for in-memory computing in a 1U implementation, part of the overall trend toward smaller, denser, and more efficient systems. The latest TYAN offerings will only drive more of it.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM zSystem and Power Score in IDC 4Q 2015 Rankings

March 18, 2016

IBM retained the number 3 spot with 14.1% share for the quarter as revenue increased 8.9% year-over-year to $2.2 billion in 4Q15. More impressively, IBM experienced strong growth for POWER Systems and double-digit growth for its z System mainframes in the quarter, according to IDC. You can check out the IDC announcement here. IDC credits z and POWER for IBM’s strong platform finish in 2015.

Primary_LinuxONE_LeftAngle-1 (1) zSystem-based LinuxONE

DancingDinosaur has expected these results and been reporting IBM’s z System and POWER System successes for the past year. You can check it out here (z13s) and here (LinuxOne) and here (Power Systems LC).

Along with deservedly crowing about its latest IDC ranking IBM added:  z Systems saw double digit growth due to a number of new portfolio enhancements. The next-generation z13 mainframe, optimized for digital businesses and hybrid cloud environments, is designed to handle mobile transactions securely and at scale, while enabling clients to run analytics on the system and in real time. IBM expanded its commitment to offering open-source on the mainframe by launching a line of Linux-only systems in August of 2015. LinuxONE is based on the latest generation of z Systems technology and enables popular open-source tools and software on the mainframe. IBM also added what amounts to a Business Class z with the z13s to go along with a Business Class dedicated Linux z, the LinuxONE Rockhopper.

Meanwhile, IBM has started to get some uptake for its Open Mainframe Project. In addition to announcing support from the usual mainframe suspects—IBM, CA, Compuware, SUSE, BMC, and others—it also announced its first projects. These include an effort to find ways to leverage new software and tools in the Linux environment that can better take advantage of the mainframe’s speed, security, scalability, and availability. DancingDinosaur is hoping that in time the Open Mainframe Project will produce the kind of results the Open POWER Foundation has recently generated for the POWER Platform

IBM attributes the growing traction of Linux running on POWER Systems in large part to optimized solutions such as DB2 BLU, SAP HANA, and other industry big data software, built on POWER Systems running Linux. In October 2015, IBM expanded its Linux on Power Systems portfolio with the LC line of servers. These servers are infused with OpenPOWER Foundation technology and bring the higher performance of the POWER CPU to the broad Linux community. The POWER-based LC line along with the z-based LinuxONE Rockhopper should give any data center manager looking to run a large, efficient Linux server farm a highly cost-competitive option that can rival or even beat the x86 option. And given that both platforms will handle Docker containers and microservices and support all of today’s popular development tools there is no reason to stick with x86.

From a platform standpoint, IBM appears to be in sync with what IDC is reporting: Datacenter buildout continues, and the main beneficiary this quarter is the density-optimized segment of the market, where growth easily outpaced the overall server market. Density-optimized servers achieved a 30.2% revenue growth rate this quarter, contributing a full 2 percentage points to the overall 5.2% revenue growth in the market.

“The fourth quarter (of 2015) was a solid close to a strong year of growth in the server market, driven by on premise refresh deployments as well as continued hyperscale cloud deployments,” said Kuba Stolarski, Research Director, Servers and Emerging Technologies at IDC. “As the cyclical refresh of 2015 comes to an end, the market focus has begun to shift towards software-defined infrastructure and hybrid environment management, as organizations begin to transform their IT infrastructure as well as prepare for the compute demands expected over the next few years from next-gen IT domains such as IoT and cognitive analytics. In the short term, 2016 looks to be a year of accelerated cloud infrastructure expansion with existing footprints filling out and new cloud datacenter buildouts across the globe.”

After a seemingly endless string of dismal quarters DancingDinosaur is encouraged by what IBM is doing now with the z, POWER Systems, and its strategic initiatives. With its strategic focus on cloud, mobile, big data analytics, cognitive computing, and IoT as well as its support for the latest approaches to software development, tools, and languages, IBM should be well positioned to continue its platform success in 2016.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

2016 State of OpenStack Adoption Shows Continued Progress

March 10, 2016

Sixty-one percent of over 600 survey respondents are adopting OpenStack to combat the expense of public cloud alternatives, reports Talligent, provider of cost and capacity management solutions for OpenStack and hybrid clouds, which conducted most recent study of OpenStack adoption. Almost as many respondents, 59%, have opted for OpenStack to improve the responsiveness of IT service delivery.

openstack-logo

OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their users to provision resources through a web interface. As OpenStack puts it: A key part of the OpenStack Foundation mission is to inform, and with the ever expanding ecosystem, we felt it was a good time to cut through the noise to give our members the facts needed to make sound decisions.

In that spirit, make the OpenStack Marketplace one of your first steps in planning an OpenStack effort. There you will find the technology broken down into digestible chunks with details like which components are included, the versions used, and the APIs exposed. The community has also implemented interoperability testing to validate products displaying OpenStack logos. The results are now available in the Marketplace for public clouds, hosted private clouds, distributions & appliances.

DancingDinosaur has covered OpenStack numerous times; for example here and here, IBM fully committed to OpenStack. Late last spring it announced an expanded suite of OpenStack services that allow organizations to integrate applications and data across hybrid clouds including public, dedicated and local cloud environments without the fear of vendor lock-in or costly customization.

IBM may be a bit in front of the market on this. The Talligent survey found private clouds will not be replaced by public clouds very soon, with 54% of respondents still expecting their cloud use to be ALL or mostly private five years from now.

But whether this will occur in two years or five years developers and enterprises using the IBM Cloud OpenStack Services will be able to launch applications on local, on-premises installations and public clouds hosted on the SoftLayer infrastructure, VMware, or the IBM Cloud. This can all be done without changing code or configurations. As a result, developers can build and test an application in a public cloud and use the interoperability of OpenStack to seamlessly deploy that same application and data across any combination of clouds; public, dedicated and local/private.

The Talligent survey also found OpenStack deployments, once in place, are expected to expand quickly beyond development environments, growing from 43% to 89% within 12 months. For QA/Test the expected growth will be a tad stronger, from 47% to 91% within 12 months.

Other interesting tidbits from the survey: the top three workloads currently delivered on OpenStack include: new green field applications (69%); containers (61%), web applications (58%). No surprise there.  Also, as noted above, private clouds should continue to thrive as OpenStack users expect high levels of private cloud use within the next 5 years. Fourteen percent, however, are expecting to deploy across a balanced mix of private and public clouds. At the same time, the survey suggests that PaaS, Containers, and privately managed OpenStack are expected to grow in use while proprietary public clouds and legacy virtualization are likely to decline.

Finally, the survey respondents voiced their opinions on the OpenStack providers. Although industry vendors like VMware, IBM, HPE, Cisco and more are exploring ways to support customers in a hybrid cloud mix, the respondents, as previously noted, are not quite ready to move to a hybrid model. Still, the respondents voiced a clear desire for more operational tools.

Similarly, a majority of respondents currently using OpenStack are still prepared to maintain most of their environment on-premises, with 54% saying they will continue to be more than 80% private over the next 5 years. This may reflect ongoing concerns of corporate management about security in the public cloud. The survey, however, picked up some ambivalence on this point: 30% of the respondents using OpenStack report planning to move more than 80% of their environments to the public cloud over the next 5 years. Could this be a signal that security concerns may be fading?

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM Gets Serious about Linux on z Systems

February 12, 2016

 

It has taken the cloud, open source, and mobile for IBM to finally, after more than a decade of Linux on z, for the company to turn it into the agile development machine it should have been all along. Maybe z data centers weren’t ready back then, maybe they aren’t all that ready now, but it is starting to happen.

Primary_LinuxONE_LeftAngle-1 (1)

LinuxONE Rockhopper, Refreshed for Hybrid Cloud Innovation

In March, IBM will make its IBM Open Platform available for the IBM LinuxONE (IOP) portfolio available at no cost. IOP includes a broad set of industry standard Apache-based capabilities for analytics and big data. The components supported include Apache Spark, Apache HBase and more, as well as Apache Hadoop 2.7.1. Continuing its commitment to contributing back to the open source community, IBM has optimized the Open Managed Runtime project (OMR) for LinuxONE. Now IBM innovations in virtual machine technology for new dynamic scripting languages will be brought to enterprise-grade strength.

It doesn’t stop there. IBM has ported the Go programming language to LinuxOne too. Go was developed by Google and is designed for building simple, reliable and efficient software, making it easier for developers to combine the software tools they know with the speed, security and scale offered by LinuxONE. IBM expects to begin contributing code to the Go community this summer.

Back in December IBM brought Apple’s Swift programming to the party, first to the IBM Watson iOS SDK, which gives developers a Swift API to simplify integration with many of the Watson Developer Cloud services, including the Watson Dialog, Language Translation, Natural Language Classifier, Personality Insights, Speech To Text, Text to Speech, Alchemy Language, or Alchemy Vision services – all of which are available today, and can now be integrated with just a few lines of code.

Following Apple’s introduction of Swift as the new language for OS X and iOS application development. IBM began partnering with Apple to bring the power of Swift open source programming to the z. This will be closely tied to Canonical’s Ubuntu port to the z expected this summer.

Also, through new work by SUSE to collaborate on technologies in the OpenStack space, SUSE tools will be employed to manage public, private, and hybrid clouds running on LinuxONE.  Open source, OpenStack, open-just-about-everything appears to be the way IBM is pushing the z.

At a presentation last August on Open Source & ISV Ecosystem Enablement for LinuxONE and IBM z, Dale Hoffman, Program Director, IBM’s Linux SW Ecosystem & Innovation Lab, introduced the three ages of mainframe development; our current stage being the third.

  1. Traditional mainframe data center, 1964–2014 includes • Batch • General Ledger • Transaction Systems • Client Databases • Accounts payable / receivable • Inventory, CRM, ERP Linux & Java
  2. Internet Age, 1999–2014 includes–• Server Consolidation • Oracle Consolidation • Early Private Clouds • Email • Java®, Web & eCommerce
  3. Cloud/Mobile/Analytics (CAMSS2) Age, 2015–2020 includes– • On/Off Premise, Hybrid Cloud • Big Data & Analytics • Enterprise Mobile Apps • Security solutions • Open Source LinuxONE and IBM z ecosystem enablement

Hoffman didn’t suggest what comes after 2020 but we can probably imagine: Cognitive Computing, Internet of Things, Blockchain. At least those are trends starting to ramp up now.

He does, however, draw a picture of the state of Linux on the mainframe today:

  • 27% of total installed capacity run Linux
  • Linux core capacity increased 16% from 2Q14 to 2Q15
  • 40% of customers have Linux cores
  • 80% of the top 100 customers (in terms of installed MIPS) run Linux on the mainframe
  • 67% of new accounts run Linux

To DancingDinosaur, this last point about the high percentage of new z accounts running Linux speaks to where the future of the z is heading.

Maybe as telling are the following:

  • 64% of companies participate in Open Source projects
  • 78% of companies run on open source
  • 88% of companies to increase open source contributions in the next 2-3 year
  • 47% to release internal tools & projects as OSS
  • 53% expect to reduce barriers to employee participation in open source
  • 50% report that more than half of their engineers are working on open source projects
  • 66% of companies build software on open source

Remember when open source and Linux first appeared for z, data center managers were shocked at the very concept. It was anti-capitalist at the very least, maybe even socialist or communist. Look at the above percentages; open source has gotten about as mainstream as it gets.

It will be interesting to see how quickly developers move to LinuxONE for their CAMSS projects. IBM hasn’t said anything about the pricing of the refreshed Rockhopper model or about the look and feel of the tools. Until the developers know, DancingDinosaur expects they will continue to work on the familiar x86 tools they are using now.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Exploiting the IBM z13 for Maximum Price/Performance Advantage

February 4, 2016

The z13 is the most powerful general purpose computer IBM has ever made. The key to capturing the maximum value from the z13, however, lies in how you plan, design, configure, and optimize your systems and software for everything from COBOL and Java to process parallelization and analytics. What you do in this regard will have significant impact on not only the price/performance you experience but on your success at achieving the business outcomes you are expecting.

z13-under the covers

IBM System z13

This really becomes a software configuration challenge. By tapping approximately 600 internal processors IBM already has optimized the hardware, input, output, memory, and networking/communications about as much as it can be. Your job is to optimize the software you are running, which will require working closely with your ISV.

The place to start is by leveraging the z13’s new compiler technology, parallelism, zIIP and assist processors. This will enable you to save significant money while boosting workload performance. You will literally be doing more for less.

Similarly, in the not too distant past Moore’s Law would virtually guarantee a 15-20% price/performance gain automatically just by taking a new machine out of the box and plugging it in. That’s no longer the case. Now you will have to partner with your ISV to exploit advanced software to maximize the hardware payback and continue the ride along the favorable Moore’s Law price/performance slope.

Then look at the latest COBOL V5.x and its compiler on the z13. Out of the box it is better optimized than previous compilers. In general, the strategic value of COBOL V5.x comes from migrating high CPU usage programs as quickly as possible, effectively saving organizations considerable money by running optimized code.

Some organizations report a 15% on average reduction of CPU time, which adds up to significant savings in monthly CPU charges. How significant? Up to $150k less on a $1 million bill, with some reporting even higher percentage reductions producing even greater savings. Just migrate to COBOL V5.2 (or at least V5.1) to achieve the savings. In general, staying on the software curve with the latest releases of the OS, languages, and compilers with applications optimized for them is the best way to ensure your workloads are achieving top performance in the most cost-effective way.

For example, the new z13 processor leverages a new Vector Facility for certain COBOL statements and expands the use of Decimal Floating Point Facility for packed decimal calculations. Well-structured, compute-intensive batch applications running on z13 and compiled with the Enterprise COBOL V5.2  compiler have shown CPU reduction usage of up to 14% over the same applications running on zEC12 (compiled with the GA release of Enterprise COBOL V5.1), according to IBM. The result: improved workload price/performance.

Enterprise COBOL V5.2 also includes new features to improve programmability, developer productivity, and application modernization. Supporting JSON, for instance, will provide mobile applications easy access to data and the processing they need from business critical production applications written in COBOL.

The z13 and its z sister, the latest LinuxONE dedicated Linux models, were designed and optimized from the start for cloud, mobile, and analytics. They were intended to run alongside traditional mainframe workloads with z/OS or Linux running on the appropriate models.

Finally, plan to take advantage of the new assist processors and expanded memory capacity to further boost performance and lower cost. With the z13, there is a mandatory migration of all zAAP-enabled applications to zIIP. Expect the usage of the zIIP assist processors to surge when all those Java applications move from the zAAP.  ISVs like Compuware should be able to help with this.  In addition, if you enable SMT on the z13, you’ll immediately get more Java capacity.  Applications that run under IBM WebSphere (WAS) on z/OS will benefit too.

The z13 and especially the LinuxONE are breaking new ground. IBM has established, in conjunction with the Linux Foundation, an Open Mainframe Project to support and advance ongoing open source Linux innovation on the mainframe. IBM also is breaking with its traditional mainframe pricing model by offering a pay-per-use option in the form of a fixed monthly payment with costs scaling up or down based on usage. It also offers per-core pricing with software licenses for designated cores. See DancingDinosaur here.

An upcoming DancingDinosaur will look at more of the enhancements being added to these machines, including some of the latest LinuxOne enhancements like support for Google’s Go language and Cloudant’s NoSQL services. The message: the new z System can take you to the places you will want to be in this emerging cloud-mobile-analytics era.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM zSystem Continues Surge in 4Q15

January 22, 2016

DancingDinosaur follows technology, not financial investments, so you’d be an idiot if you considered what follows as investment advice. It is not.  Still, as one who has built a chunk of his career around the mainframe, it is good to see the z System continuing to remain in the black and beating the sexier Power lineup although I do follow both closely. See the latest IBM financials here.

  ibm-z13

The IBM z13 System

 Specifically, as IBM reported on Tuesday, revenues from z Systems mainframe server products increased 16 percent compared with the year-ago period (up 21 percent adjusting for currency).  Total delivery of z Systems computing power, as measured in MIPS (millions of instructions per second), increased 28 percent.  Revenues from Power Systems were up 4 percent compared with the 2014 period (up 8 percent adjusting for currency).

Almost as good, revenues from Power Systems were up 4 percent compared with the 2014 period (up 8 percent adjusting for currency). Power revenues have been up most of the year although they got a little blurry in the accounting.

In the storage market, which is getting battered by software defined storage (SDS) on one hand and cloud-based storage on the other, IBM reported revenues from System Storage decreased 11 percent (down 7 percent adjusting for currency). The storage revenues probably won’t bounce back fast, at least not without IBM bringing out radically new storage products. That storage rival EMC got acquired by Dell should be some kind of signal that the storage market as the traditional enterprise players knew it is drastically different. For now object storage, SDS, and even Flash won’t replace the kind of revenue IBM used to see from DS8000 disk systems or TS enterprise tape libraries loaded with mechanical robotics.

Getting more prominence is IBM’s strategic initiative. This has been a company priority all year. Strategic initiatives include cloud, mobile, analytics, security, IoT, and cognitive computing. Q4 revenues, as reported by IBM, from these strategic imperatives — cloud, analytics, and engagement — increased 10 percent year-to-year (up 16 percent adjusting for currency).  For the full year, revenues from strategic imperatives increased 17 percent (up 26 percent adjusting for currency and the divested System x business) to $28.9 billion and now represents 35 percent of total IBM consolidated revenue.

For the full year, total cloud revenues (public, private and hybrid) increased 43 percent (up 57 percent adjusting for currency and the divested System x business) to $10.2 billion.  Revenues for cloud delivered as a service — a subset of the total cloud revenue — increased 50 percent to $4.5 billion; and the annual as-a-service run rate increased to $5.3 billion from $3.5 billion in the fourth quarter of 2014.

Meanwhile, revenues from business analytics increased 7 percent (up 16 percent adjusting for currency) to $17.9 billion.  Revenues from mobile more than tripled and from security increased 5 percent (up 12 percent adjusting for currency).

Commenting on IBM latest financial was Timothy Prickett Morgan, who frequently writes on IBM’s platforms. Citing Martin Schroeter, IBM’s chief financial officer, statements to analyst, Morgan suggested that low profit margins, which other financial analysts complained about, put pressure on the System z13 product line that launched early in the year. After a fast start, apparently, the z13 is now experiencing a slowdown in the upgrade cycle. It’s at this point that DancingDinosaur usually expects to see a new z, typically a business class version of the latest mainframe, the z13 in this case, but that does not appear to be in the offing. About the closest IBM got to that was the RockHopper model of the LinuxOne, a z optimized only for Linux, cloud, mobile, and analytics.

Morgan also noted that IBM added about 50 new mainframe customers for the year on an installed base of about 6,000 active customers. DancingDinosaur has been tracking that figure for years and it has not fluctuated much in recent years. And am never sure how to count the handful of IT shops that run a z in the IBM cloud.  But 5000-6000 active z shops still sounds about right.

Power Systems, which has also grown four quarters in a row, and was up 8 percent at constant currency. This has to be a relief to the company, which has committed over $1 billion to Power. IBM attributes some of this growth to its enthusiastic embrace of Linux on Power8, but Morgan complains of having no sense of how much of the Power Systems pie is driven by scale-out Linux machines intended to compete against Intel Xeon servers. Power also is starting to get some boost from the OpenPOWER Foundation, members that started to ship products in the past few months. It’s probably minimal revenue now but over time it should grow.

For those of us who are counting on z and Power to be around for a while longer, the latest financials should be encouraging.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Mobile Financial App Security Appears Shaky

January 15, 2016

IBM has made mobile a key strategic imperative going forward, even discounting mobile software license charges on z. However, a recent study suggests that mobile apps may be less secure than app users think. For example, 83% of the app users surveyed felt their applications were adequately secure. Yet, 90% of the applications Arxan Technologies tested were vulnerable to at least two of the Open Web Application Security Project (OWASP) Mobile Top 10 Risks.

dino Arxan_SOAS_Title_Image

The OWASP Top Ten is an awareness document for web application security. The OWASP Top Ten represents a broad consensus about what the most critical web application security flaws are. Security experts will use the list as a first step in changing the security awareness and software development culture around security in organizations around the world. You can find the Arxan report here.

In the latest study, 41% of mobile finance app users expect their finance apps to be hacked within the next six months. That’s not exactly a vote of confidence. Even worse, 42% of executive IT decision makers, those who have oversight or insight into the security of the mobile finance apps they produce, feel the same way.  Does this bother you?

It should. The researchers found that 81% of app users would change providers if apps offered by similar providers were more secure. While millennials are driving the adoption of mobile apps, their views on the importance of app security were equally as strong as the older non-millennials. Overall, survey results showed very little geographical discrepancies across the US, UK, Germany, and Japan.

This sentiment makes it sound like mobile finance applications are at a hopeless state of security where, despite Herculean efforts to thwart attackers, adversaries are expected to prevail. But the situation is not hopeless; it’s careless. Half the organizations aren’t even trying. Fully 50% of organizations have zero budget allocated for mobile app security—0, nothing, nada—according to the researchers.  By failing to step up their mobile security game organizations risk losing customers to competitors who offer alternative apps that are more secure.

How bad is the mobile security situation? When put to the test, the majority of mobile apps failed critical security tests and could easily be hacked, according to the researchers.  Among 55 popular mobile finance apps tested for security vulnerabilities, 92% were shown to have at least two OWASP Mobile Top 10 Risks. Such vulnerabilities could allow the apps to be tampered and reverse-engineered, which could clearly put sensitive financial information in the wrong hands or, even worse, potentially redirect the flow of money. Ouch!

Think about all the banks and insurance companies that are scrambling to deploy new mobile apps. As it turns out, financial services organizations, the researchers report, also are among the top targets of hackers seeking high-value payment data, intellectual property (IP), and other sensitive information. Specifically, employee, customer, and soft IP data are the top three targets of cyber-attacks in the financial services market; while at the same time theft of hard IP soared 183% in 2015, according to PwC, another firm researching the segment.

With the vast majority of cyber-attacks happening at the application layer, one would think that robust application security would be a fundamental security measure being aggressively implemented and increasingly required by regulators, particularly given the financial services industry’s rapid embrace of mobile financial apps. But apparently it is not.

So where does the financial mobile app industry stand? Among the most prevalent OWASP Mobile Top 10 Risks identified among the mobile finance apps tested the top 2 risks were:

1) Lack of binary protection (98%) – this was the most prevalent vulnerability

2) Insufficient transport layer protection (91%).

A distant third, at 58%, was unintended data leakage. All these vulnerabilities, the top two especially, make the mobile financial applications susceptible to reverse-engineering and tampering in addition to privacy violations and identity theft.

Says Arxan CTO Sam Rehman: “The impact for financial institutions and mobile finance app users can be devastating. Imagine having your mobile finance app leak your personal financial information and identity, or your app maliciously redirecting your money.” The customer outrage and bad press that followed wouldn’t be pretty, not to mention the costly lawsuits.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.


%d bloggers like this: