Posts Tagged ‘POWER9’

Open POWER-Open Compute-POWER9 at Open Compute Summit

March 16, 2017

Bryan Talik, President, OpenPOWER Foundation provides a detailed rundown on the action at the Open Compute  Summit held last week in Santa Clara. After weeks of writing about Cognitive, Machine Learning, Blockchain, and even quantum computing, it is a nice shift to conventional computing platforms that should still be viewed as strategic initiatives.

The OpenPOWER, Open Compute gospel was filling the air in Santa Clara.  As reported, Andy Walsh, Xilinx Director of Strategic Market Development and OpenPOWER Foundation Board member explained, “We very much support open standards and the broad innovation they foster. Open Compute and OpenPOWER are catalysts in enabling new data center capabilities in computing, storage, and networking.”

Added Adam Smith, CEO of Alpha Data:  “Open standards and communities lead to rapid innovation…We are proud to support the latest advances of OpenPOWER accelerator technology featuring Xilinx FPGAs.”

John Zannos, Canonical OpenPOWER Board Chair chimed in: For 2017, the OpenPOWER Board approved four areas of focus that include machine learning/AI, database and analytics, cloud applications and containers. The strategy for 2017 also includes plans to extend OpenPOWER’s reach worldwide and promote technical innovations at various academic labs and in industry. Finally, the group plans to open additional application-oriented workgroups to further technical solutions that benefits specific application areas.

Not surprisingly, some members even see collaboration as the key to satisfying the performance demands that the computing market craves. “The computing industry is at an inflection point between conventional processing and specialized processing,” according to Aaron Sullivan, distinguished engineer at Rackspace. “

To satisfy this shift, Rackspace and Google announced an OCP-OpenPOWER server platform last year, codenamed Zaius and Barreleye G2.  It is based on POWER9. At the OCP Summit, both companies put on a public display of the two products.

This server platform promises to improve the performance, bandwidth, and power consumption demands for emerging applications that leverage machine learning, cognitive systems, real-time analytics and big data platforms. The OCP players plan to continue their work alongside Google, OpenPOWER, OpenCAPI, and other Zaius project members.

Andy Walsh, Xilinx Director of Strategic Market Development and OpenPOWER Foundation Board member explains: “We very much support open standards and the broad innovation they foster. Open Compute and OpenPOWER are catalysts in enabling new data center capabilities in computing, storage, and networking.”

This Zaius and Barreleye G@ server platforms promise to advance the performance, bandwidth and power consumption demands for emerging applications that leverage the latest advanced technologies. These latest technologies are none other than the strategic imperatives–cognitive, machine learning, real-time analytics–IBM has been repeating like a mantra for months.

Open Compute Projects also were displayed at the Summit. Specifically, as reported: Google and Rackspace, published the Zaius specification to Open Compute in October 2016, and had engineers to explain the specification process and to give attendees a starting point for their own server design.

Other Open Compute members, reportedly, also were there. Inventec showed a POWER9 OpenPOWER server based on the Zaius server specification. Mellanox showcased ConnectX-5, its next generation networking adaptor that features 100Gb/s Infiniband and Ethernet. This adaptor supports PCIe Gen4 and CAPI2.0, providing a higher performance and a coherent connection to the POWER9 processor vs. PCIe Gen3.

Others, reported by Talik, included Wistron and E4 Computing, which showcased their newly announced OCP-form factor POWER8 server. Featuring two POWER8 processors, four NVIDIA Tesla P100 GPUs with the NVLink interconnect, and liquid cooling, the new platform represents an ideal OCP-compliant HPC system.

Talik also reported IBM, Xilinx, and Alpha Data showed their line ups of several FPGA adaptors designed for both POWER8 and POWER9. Featuring PCIe Gen3, CAPI1.0 for POWER8 and PCIe Gen4, CAPI2.0 and 25G/s CAPI3.0 for POWER9 these new FPGAs bring acceleration to a whole new level. OpenPOWER member engineers were on-hand to provide information regarding the CAPI SNAP developer and programming framework as well as OpenCAPI.

Not to be left out, Talik reported that IBM showcased products it previously tested and demonstrated: POWER8-based OCP and OpenPOWER Barreleye servers running IBM’s Spectrum Scale software, a full-featured global parallel file system with roots in HPC and now widely adopted in commercial enterprises across all industries for data management at petabyte scale.  Guess compute platform isn’t quite the dirty phrase IBM has been implying for months.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Happy Holidays and Best Wishes for 2017

December 21, 2016

DancingDinosaur is taking the rest of the year off. The next posting will be Jan. 5. In the meantime, best wishes for delightful holidays and a peaceful and prosperous New Year. Good time to read a new book (below).

iot-book-cover-2

Until then, based on comments IBM has hinted at we can expect a new z in 2017, might be the z14 as some suggest or something else. Expect it to be optimized for cognitive computing and the other strategic imperatives IBM has been touting for the past two years. But it also will need to satisfy the installed mainframe data center base so expect more I/O, faster performance, and improved price/performance.

Was nice to see LinuxONE come into its own late this year.  Expect to see much more from this z-based machine in 2017. Probably a new LinuxONE machine in the New Year as well.

And we can expect the new POWER9 this year.  That should perk things up a bit, but realistically, it appears IBM considers platform a dirty word. They really want to be a cloud player doing cognitive computing across a slew of vertical industries.

FYI, an important new book on IoT, Building the Internet of Things, by Maciej Kranz was published late in Nov. (See graphic above. It hit third place on the NY Times non-fiction best seller list in mid December. Not bad for a business tech book. You can find it on Amazon.com here. Kranz is a Cisco executive so if you have a relationship with a Cisco rep see if they’ll give you a free copy. Full disclosure: your blogger was the ghostwriter for the book and was thanked in the acknowledgements at the end of the book.  Like movies, Kranz and I have already started on the sequel, The Co-Economy (although the title may change). The new book is briefly described in the IoT book (pg. 161).

BTW, if you’ve always wanted to author a book but didn’t know how to start or finish or proceed, feel welcome to contact me through Technologywriter.com at the bottom of this post. We’ll figure out how to get it done.

Again, best wishes for the holidays. See you in the New Year.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here

IBM 3Q16 Results Telegraph a New z System in 2017

October 27, 2016

DancingDinosaur usually doesn’t like to read too much into the statements of IBM suits at financial briefings. This has been especially true since IBM introduced a new presentation format this year to downplay its platform business and emphasize its strategic imperatives. (Disclaimer: DancingDinosaur is NOT a financial analyst but a technology analyst.)

But this quarter the CFO said flat out: “Our z Systems results reflect a product cycle dynamic, seven quarters into the z13 cycle; revenue was down while margins continue to expand. We continue to add new clients to the platform and we are introducing new technologies like block chain. We announced new services to make it easier to build and test block chain networks in a secure environment as we build our block chain platform it’s been engineered to run on multiple platforms but is optimized for scale, security and resilience on both the IBM mainframe and the IBM cloud.”

linuxone-emperorLinuxONE Emperor

If you parse the first sentence–reflect a product cycle dynamic–he is not too subtly hinting that IBM needs a z System refresh if they want to stop the financial losses with z. You don’t have to be a genius to expect a new z, probably the z14, in 2017. Pictured above is the LinuxONE Emperor, a z optimized to run Linux. The same suit said “We’ve been shifting our platform to address Linux, and in the third quarter Linux grew at a double digit rate, faster than the market.” So based on that we can probably guess that the z14 (or whatever it will be called) will run z/OS, followed shortly by a LinuxONE version to further expand the z System’s Linux footprint.

Timothy Prickett Morgan picked that up too and more. He expects a z14 processor complex will be announced next year around the same time that the Power9 chip ships. In both cases, Power and z customers who can wait will wait, or, if they are smart, will demand very steep discounts on current Power8 hardware to make up for the price/performance improvements that are sure to accompany the upcoming Power9 and z machines.

When it comes to revenue 3Q16 was at best flat, but actually was down again overall. The bright spot again was IBM’s strategic imperatives. As the suit stated: in total, we continue to deliver double-digit revenue growth in our strategic imperatives led by our cloud business. Specifically, cognitive solutions were up 5% and, within that, solution software was up 8%.

Overall, growth in IBM’s strategic imperatives rose 15%. Over the last 12 months, strategic imperatives delivered nearly $32 billion in revenue and now represent 40% of IBM. The suit also emphasized strong performance in IBM’s cloud offerings which increased over 40%, led by the company’s as-a-service offerings. IBM ended the third quarter with an as-a-service run rate of $7.5 billion, up from $6.7 billion last quarter. Most of that was attributed to organic growth, not acquisitions. Also strong was IBM’s revenue performance in security and mobile. In addition, the company experienced growth in its analytic offerings, up 14% this quarter with contributions from the core analytics platform, especially the Watson platform, Watson Health, and Watson IoT.

IBM apparently is convinced that cognitive computing, defined as using data and adding intelligence into products and services to help companies make better decisions, is the wave of the future. As the company sees it, real value lies in providing cognitive capabilities via the IBM cloud. A critical element of its strategy is IBM’s industry focus. Initially industry platforms will address two substantial opportunity areas, financial services and block chain solutions. You can probably add healthcare too.

Blockchain may emerge as the sleeper, although DancingDinosaur has long been convinced that blockchain is ideal for z shops—the z already handles the transactions and delivers the reliability, scalability, availability, and security to do it right.  As IBM puts it, “we believe block chain has the potential to do for trusted transactions what the Internet did for information.” Specifically, IBM is building a complete block chain platform and is now working with over 300 clients to pioneer block chain for business, including CLS, which settles $5 trillion per day in the currency markets, to implement a distributed ledger in support of its payment netting service, and Bank of Tokyo Mitsubishi, for smart contracts to manage service level agreements and automate multi party transactions.

Says Morgan: “IBM is very enthusiastic about using Blockchain in commercial transaction processing settings, and has 40 clients testing it out on mainframes, but this workload will take a long time to grow. Presumably, IBM will also push Blockchain on Power as well.”  Morgan may be right about blockchain coming to Power, but it is a natural for the z right now, whether as a new z14 or a new z-based LinuxONE machine.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghostwriter. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Oracle Aims at Intel and IBM POWER

July 8, 2016

In late June Oracle announced the SPARC S7 processor, a new 20nm, 4.27 GHz, 8-core/64-thread SPARC processor targeted for scale-out Cloud workloads that usually go to Intel x86 servers. These are among the same workloads IBM is aiming for with POWER8, POWER9, and eventually POWER10, as reported by DancingDinosaur just a couple of weeks ago.

oracle roadmap trajectory

Oracle 5-year SPARC trajectory (does not include newly announced S series).

According to Oracle, the latest additions to the SPARC platform are built on the new 4.27 GHz, 8-core/64-thread SPARC S7 microprocessor with what Oracle calls Software-in-Silicon features such as Silicon Secured Memory and Data Analytics Accelerators, which enable organizations to run applications of all sizes on the SPARC platform at commodity price points. All existing commercial and custom applications will also run on the new SPARC enterprise cloud services and solutions unchanged while experiencing improvements in security, efficiency, and simplicity.

By comparison, the IBM POWER platform includes with the POWER8, which is delivered as a 12-core, 22nm processor. The POWER9, expected in 2017, will be delivered as 14nm processor with 24 cores and CAPI and NVlink accelerators, which ensure delivery of more performance with greater energy efficiency.  By 2018, the IBM roadmap shows POWER8/9 as a 10nm, maybe even a 7nm, processor, based on the existing micro-architecture. And an even beefier POWER10 is expected to arrive around 2020.

At the heart of the Oracle’s new scale-out, commodity-priced server, the S7. According to Oracle, the SPARC S7 delivers balanced compute performance with 8 cores per processor, integrated on-chip DDR4 memory interfaces, a PCIe controller, and coherency links. The cores in the SPARC S7 are optimized for running key enterprise software, including Java applications and database. The SPARC S7–based servers use very high levels of integration that increase bandwidth, reduce latencies, simplify board design, reduce the number of components, and increase reliability, according to Oracle. All this promises an increase in system efficiency with a corresponding improvement in the economics of deploying a scale-out infrastructure when compared to other vendor solutions.

Oracle’s SPARC S7 processor, based on Oracle enterprise class M7 servers, is optimized for horizontally scalable systems with all the key functionality included in the microprocessor chip. Its Software-in-Silicon capabilities, introduced with the SPARC M7 processor, are also available in the SPARC S7 processor to enable improved data protection, cryptographic acceleration, and analytics performance. These features include Security-in-Silicon, which provides Silicon Secured Memory and cryptographic acceleration, and Data Analytics Accelerator (DAX) units, which provide In-memory query acceleration and in-line decompression

SPARC S7 processor–based servers include single- and dual-processor systems that are complementary to the existing mid-range and high-end systems based on Oracle’s SPARC M7 processor. SPARC S7 processor–based servers include two rack-mountable models. The SPARC S7-2 server uses a compact 1U chassis, and the SPARC S7-2L server is implemented in a larger, more expandable 2U chassis. Uniformity of management interfaces and the adoption of standards also should help reduce administrative costs, while the chassis design provides density, efficiency, and economy as increasingly demanded by modern data centers. Published reports put the cost of the new Oracle systems at just above $11,000 with a single processor, 64GB of memory and two 600GB disk drives, and up to about $50,000 with two processors and a terabyte of memory.

DancingDinosaur doesn’t really have enough data to compare the new Oracle system with the new POWER8 and upcoming POWER9 systems. Neither Oracle nor IBM have provided sufficient details. Oracle doesn’t even offer a roadmap at this point, which might tell you something.

What we do know about the POWER machines is this: POWER9 promises a wealth of improvements in speeds and feeds. Although intended to serve the traditional Power Server market, it also is expanding its analytics capabilities and is being optimized for new deployment models like hyperscale, cloud, and technical computing through scale-out deployment. Available for either clustered or multiple formats, it will feature a shorter pipeline, improved branch execution, and low latency on the die cache as well as PCI gen 4.

According to IBM, you can expect a 3x bandwidth improvement with POWER9 over POWER8 and a 33% speed increase. POWER9 also will continue to speed hardware acceleration and support next gen NVlink, improved coherency, enhance CAPI, and introduce a 25 GPS high speed link. Although the 2-socket chip will remain, IBM suggests larger socket counts are coming. It will need that to compete with Intel.

At least IBM showed its POWER roadmap. There is no comparable information from Oracle. At best, DancingDinosaur was able to dig up the following sketchy details for 2017-2019: Next Gen Core, 2017 Software-in-Silicon V1, Scale Out fully integrated Software-in-Silicon V1 or 2; 2018- 2019 Core Enhancements, Increased Cache, Increased Bandwidth, Software-in-Silicon V3.

Both Oracle and IBM have made it clear neither really wants to compete in the low cost, scale out server market. However, as both companies’ large clients turn to scale out, hyperscale Intel-based systems they have no choice but to follow the money. With the OpenPOWER Foundation growing and driving innovation, mainly in the form of accelerators, IBM POWER may have an advantage driving a very competitive price/performance story against Intel. With the exception of Fujitsu as an ally of sorts, Oracle has no comparable ecosystem as far as DancingDinosaur can tell.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Fires a Shot at Intel with its Latest POWER Roadmap

June 17, 2016

In case you worry that IBM will abandon hardware in the pursuit of its strategic initiatives focusing on cloud, mobile, analytics and more; well, stop worrying. With the announcement of its POWER Roadmap at the OpenPOWER Summit earlier this spring, it appears POWER will be around for years to come. But IBM is not abandoning the strategic initiatives either; the new Roadmap promises to support new types of workloads, such as real time analytics, Linux, hyperscale data centers, and more along with support for the current POWER workloads.

power9b

Pictured above: POWER9 Architecture, courtesy of IBM

Specifically, IBM is offering a denser roadmap, not tied to technology and not even tied solely to IBM. It draws on innovations from a handful of the members of the Open POWER Foundation as well as support from Google. The new roadmap also signals IBM’s intention to make a serious run at Intel’s near monopoly on enterprise server processors by offering comparable or better price, performance, and features.

Google, for example, reports porting many of its popular web services to run on Power systems; its toolchain has been updated to output code for x86, ARM, or Power architectures with the flip of a configuration flag. Google, which strives to be everything to everybody, now has a highly viable alternative to Intel in terms of performance and price with POWER. At the OpenPOWER Summit early in the spring, Google made it clear it plans to build scale-out server solutions based on OpenPower.

Don’t even think, however, that Google is abandoning Intel. The majority of its systems are Intel-oriented. Still, POWER and the OpenPOWER community will provide a directly competitive processing alternative.  To underscore the situation Google and Rackspace announced they were working together on Power9 server blueprints for the Open Compute Project, designs that reportedly are compatible with the 48V Open Compute racks Google and Facebook, another hyperscale data center, already are working on.

Google represents another proof point that OpenPOWER is ready for hyperscale data centers. DancingDinosaur, however, really is interested most in what is coming from OpenPOWER that is new and sexy for enterprise data centers, since most DancingDinosaur readers are focused on the enterprise data center. Of course, they still need ever better performance and scalability too. In that regard OpenPOWER has much for them in the works.

For starters, POWER8 is currently delivered as a 12-core, 22nm processor. POWER9, expected in 2017, will be delivered as 14nm processor with 24 cores and CAPI and NVlink accelerators. That is sure to deliver more performance with greater energy efficiency.  By 2018, the IBM roadmap shows POWER8/9 as a 10nm, maybe even 7nm, processor, based on the existing micro-architecture.

The real POWER future, arriving around 2020, will feature a new micro-architecture, sport new features and functions, and bring new technology. Expect much, if not almost all, of the new functions to come from various OpenPOWER Foundation partners,

POWER9, only a year or so out, promises a wealth of improvements in speeds and feeds. Although intended to serve the traditional Power Server market, it also is expanding its analytics capabilities and bringing new deployment models for hyperscale, cloud, and technical computing through scale out deployment. This will include deployment in both clustered or multiple formats. It will feature a shorter pipeline, improved branch execution, and low latency on the die cache as well as PCI gen 4.

Expect a 3x bandwidth improvement with POWER9 over POWER8 and a 33% speed increase. POWER9 also will continue to speed hardware acceleration and support next gen NVlink, improved coherency, enhance CAPI, and introduce a 25 GPS high speed link. Although the 2-socket chip will remain, IBM suggests larger socket counts are coming. It will need that to compete with Intel.

As a data center manager, will a POWER9 machine change your data center dynamics?  Maybe, you decide: a dual-socket Power9 server with 32 DDR4 memory slots, two NVlink slots, three PCIe gen-4 x16 slots, and a total 44 core count. That’s a lot of computing power in one rack.

Now IBM just has to crank out similar advances for the next z System (a z14 maybe?) through the Open Mainframe Project.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Ubuntu Linux (beta) for the z System is Available Now

April 8, 2016

As recently as February, DancingDinosaur has been lauding IBM’s bolstering of the z System for Linux and support for the latest styles of app dev. As part of that it expected Ubuntu Linux for z by the summer. It arrived early.  You can download it for LinuxONE and the z now, hereubuntu-logo-300x225

Of course, the z has run Linux for over a decade. That was a customized version that required a couple of extra steps, mainly recompiling, if x86 Linux apps were to run seamlessly. This time Canonical and the Ubuntu community have committed to work with IBM to ensure that Ubuntu works seamlessly with IBM LinuxONE, z Systems, and Power Systems. The goal is to enable IBM’s enterprise platforms to play nicely with the latest app dev goodies, including NFV, containers, KVM, OpenStack, big data analytics, DevOps, and even IoT. To that end, all three parties (Canonical, the Ubuntu community, and IBM) commit to provide reference architectures, supported solutions, and cloud offerings, now and in the future.

Ubuntu is emerging as the platform of choice for organizations running scale-out, next-generation workloads in the cloud. According to Canonical, Ubuntu dominates public cloud guest volume and production OpenStack deployments with up to 70% market share. Global brands running Ubuntu at scale in the cloud include AT&T, Walmart, Deutsche Telecom, Bloomberg, Cisco and others.

The z and LinuxONE machines play right into this. They can support thousands of Linux images with no-fail high availability, security, and performance. When POWER 9 processors come to market it gets even better. At a recent OpenPOWER gathering the POWER 9 generated tremendous buzz with Google discussing its intentions of building a new data center server  based on an open POWER9 design that conforms to Facebook’s Open Compute Project server.

These systems will be aimed initially at hyperscale data centers. OpenPOWER processors combined with acceleration technology have the potential to fundamentally change server and data center design today and into the future.  OpenPOWER provides a great platform for the speed and flexibility needs of hyperscale operators as they demand ever-increasing levels of scalability.

According to Aaron Sullivan, Open Compute Project Incubation Committee Member and Distinguished Engineer at Rackspace. “OpenPOWER provides a great platform for the speed and flexibility needs of hyperscale operators as they demand ever-increasing levels of scalability.” This is true today and with POWER9, a reportedly 14nm processor coming around 2017, it will be even more so then. This particular roadmap looks out to 2020 when POWER10, a 10nm processor, is expected with the task of delivering extreme analytics optimization.

But for now, what is available for the z isn’t exactly chopped liver. Ubuntu is delivering scale-out capabilities for the latest development approaches to run on the z and LinuxONE. As Canonical promises: Ubuntu offers the best of open source for IBM’s enterprise customers along with unprecedented performance, security and resiliency. The latest Ubuntu version, Ubuntu 16.04 LTS, is in beta and available to all IBM LinuxOne and z Systems customers. See the link above. Currently SUSE and Red Hat are the leading Linux distributions among z data centers. SUSE also just announced a new distro of openSUSE Linux for the z to be called openSUSE Factory.

Also this week the OpenPOWER Foundation held its annual meeting where it introduced technology to boost data center infrastructures with more choices, essentially allowing increased data workloads and analytics to drive better business results. Am hoping that the Open Mainframe Project will emulate the Open POWER group and in a year or two by starting to introducing technology to boost mainframe computing along the same lines.

For instance OpenPOWER introduced more than 10 new OpenPOWER servers, offering expanded services for high performance computing and server virtualization. Or this: IBM, in collaboration with NVIDIA and Wistron, revealed plans to release its second-generation OpenPOWER high performance computing server, which includes support for the NVIDIA Tesla Accelerated Computing platform. The server will leverage POWER8 processors connected directly to the new NVIDIA Tesla P100 GPU accelerators via the NVIDIA NVLink, a high-speed interconnect technology.

In the same batch of announcements TYAN announced its GT75-BP012, a 1U, POWER8-based server solution with the ppc64 architecture. The ppc64 architecture is optimized for 64-bit big-endian PowerPC and Power Architecture processors.  Also of interest to DancingDinosaur readers may be the variation of the ppc64 that enables a pure little-endian mode with the POWER8 to enable the porting of x86 Linux-based software with minimal effort. BTW, the OpenPOWER-based platform, reportedly, offers exceptional capability for in-memory computing in a 1U implementation, part of the overall trend toward smaller, denser, and more efficient systems. The latest TYAN offerings will only drive more of it.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM Power Systems LC Aims to Expand the Power Systems Market

October 8, 2015

IBM is rapidly trying to capitalize on its investment in POWER technology and the OpenPOWER Foundation to expand the POWER franchise. The company is offering up the  Power Systems LC Server family; LC for Linux Community. This addresses how processing will be used in the immediate future; specifically in Hybrid Cloud, Hyperscale Data Centers, and Open Solutions. You could probably throw in IoT and big data/real-time analytics too although those weren’t specifically mentioned in any of the LC announcement materials or briefings.

Linux Community 1 lc server

Courtesy of IBM:  the new Power S822LC (click to enlarge)

The LC Server family  comes with a new IBM go-to-market strategy, as IBM put it: buy servers the way you want to buy them; online with simple pricing and a one-click purchase (coming soon). Your choice of standard configurations or have your configuration customized to meet your unique needs through IBM’s global ecosystem of partners and providers. Same with a selection of service and support options from an array of IBM technology partners.

There appear to be three basic configurations at this point:

  1. Power Systems S812LC: designed for entry and small Hadoop workloads
  2. Power Systems S822LC for Commercial Computing: ideal for data in the cloud and flexible capacity for MSPs
  3. Power Systems S822LC for High Performance Computing: for cluster deployments across a broad range of industries

According to the latest S812LC spec sheet, the IBM 8348 Power System S812LC server with POWER8 processors is optimized for data and Linux. It is designed to deliver superior performance and throughput for high-value Linux workloads such as industry applications, open source, big data, and LAMP.  It incorporates OpenPOWER Foundation innovations for organizations that want the advantages of running their big data, Java, open source, and industry applications on a platform designed and optimized for data and Linux. Modular in design, the Power S812LC is simple to order and can scale from single racks to hundreds.

The Power S812LC server supports one processor socket, offering 8-core 3. 32 GHz or 10-core 2.92 GHz POWER8 configurations in a 19-inch rack-mount, 2U drawer configuration. All the cores are activated. The server provides 32 DIMM memory slots. Memory features supported are 4 GB (#EM5A), 8 GB (#EM5E), 16 GB (#EM5C), and 32 GB (#EM5D), allowing for a maximum system memory of 1024 GB.

The LC Server family will leverage a variety of innovations that have been brought out by various members of the OpenPOWER Foundation over the last few months.  These include innovations from Wistron, redislabs, Tyan, Nvidia, Mellanox, Ubuntu, and Nallatech in the areas of big data, GPU acceleration, HPC, and cloud. And, of course, IBM’s CAPI.

No actual pricing was provided. In response to a question from DancingDinosaur about whether the arrival of products from the OpenPOWER Foundation was driving down Power Systems prices, the response was a curt: “We haven’t seen the drag down,” said an IBM manager. Oh well, so much for an imminent price war over Power Systems.

However, IBM reported today that  based on its own internal testing, a new Power Systems LC server can complete an average of select Apache Spark workloads – including analyzing Twitter feeds, streaming web page views and other data-intensive analytics – for less than half the cost of an Intel E5-2699 V3 processor-based server, providing clients with 2.3x better performance per dollar spent. Additionally, the efficient design of a Power Systems LC server allows for 94% more Spark social media workloads in the same rack space as a comparable Intel-based server.

These new systems are exactly what is needed to make the POWER platform viable over the long term, and it can’t be just an IBM show. With OpenPOWER Foundation members delivering innovations there is no telling what can be done in terms of computing with POWER9 and POWER10 when they come.

DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM z System After Moore’s Law

October 2, 2015

The last z System that conformed to the expectations of Moore’s Law was the zEC12. IBM could boast that it had the fastest commercial processor available.  The subsequent z13 didn’t match it in processor speed.  The z13 chip runs a 22 nm core at 5 GHz, one-half a GHz slower than the zEC12, which ran its 32nm core at 5.5 GHz. Did you even notice?

third dimension chip

In 2007 an IBM scientist holds a 3-D integrated stacked chip

In 2015, the z13 delivers about a 10 percent performance bump per core thanks to the latest tweaks in the core design, such as better branch prediction and better pipelining. But even one-half a Ghz slower, the z13 was the first system to process 2.5 billion transactions a day.  Even more importantly for enterprise data centers, z13 transactions are persistent, protected, and auditable from end-to-end, adding assurance as mobile transactions grow to an estimated 40 trillion mobile transactions per day by 2025.

IBM clearly isn’t bemoaning the decline of Moore’s Law. In fact, it has been looking beyond silicon for the processing of the future.  This week it announced a major engineering breakthrough that could accelerate carbon nanotubes for the replacement of silicon transistors to power future computing. The breakthrough allows a new way to shrink transistor contacts without reducing the performance of carbon nanotube devices, essentially opening a path to dramatically faster, smaller, and more powerful computer chips beyond the capabilities of traditional semiconductors. Guess we can stop worrying about Moore’s Law.

Without Moore’s Law, IBM optimized just about everything on the z13 that could be optimized. It provides 320 separate channels dedicated to drive I/O throughput as well as such performance goodies as simultaneous multithreading (SMT), symmetric multiprocessing (SMP), and single instruction, multiple data (SIMD). Overall about 600 processors (in addition to your configurable cores) speed and streamline processes throughout the machine. Moore’s Law, in effect, has been bypassed. As much as the industry enjoyed the annual doubling of capacity and corresponding lower price/performance it doesn’t need Moore’s Law to meet today’s insatiable demand for processing power.

The company will be doing similar things with the POWER processor. Today we have the POWER8. Coming is the POWER9 followed by the POWER10. The POWER9 reportedly will arrive in 2017 at 14nm, feature a new micro-architecture, and be optimized with CAPI and NVLINK. POWER10, reportedly, arrives around 2020 optimized for extreme analytics.

As IBM explains its latest breakthrough, carbon nanotubes represent a new class of semiconductor materials that consist of single atomic sheets of carbon rolled up into a tube. The carbon nanotubes form the core of a transistor device whose superior electrical properties promise several generations of technology scaling beyond the physical limits of silicon.

The new processor technology, IBM reports, overcomes a major hurdle that silicon and any other semiconductor transistor technologies face when scaling down. In the transistor, two things scale: the channel and its two contacts. As devices become smaller, the increased contact resistance of carbon nanotubes hindered performance gains. The latest development could overcome contact resistance all the way to the 1.8 nanometer node – four technology generations away.

Carbon nanotube chips could greatly improve the capabilities of high performance computers, enabling, for example, big data to be analyzed faster, increasing the power and battery life of mobile devices, and allowing cloud data centers to deliver services more efficiently and economically. Even cognitive computing and Internet of Things can benefit.

Until now, vendors have be able to shrink the silicon transistors, but they are approaching a point of physical limitation, which is why Moore’s Law is running out of steam. Previously, IBM demonstrated that carbon nanotube transistors can operate as effective switches at channel dimensions of less than ten nanometers. IBM’s new contact approach overcomes the contact resistance by incorporating carbon nanotubes into semiconductor devices, which could result in smaller chips with greater performance and lower power consumption.

As transistors shrink in size, electrical resistance within the contacts increases, which limits performance. To overcome this resistance, IBM researchers gave up traditional contact schemes and created a metallurgical process akin to microscopic welding that chemically binds the metal atoms to the carbon atoms at the ends of nanotubes. This end-bonded contact scheme allows the contacts to be shrunken below 10 nanometers without impacting performance. This brings the industry a step closer to the goal of a carbon nanotube technology within the decade, says IBM.

Let’s hope this works as expected. If not, IBM has other possibilities already in its research labs. DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

z Systems and Cloud Lead IBM 2Q Results

July 24, 2015

DancingDinosaur generally steers clear of writing about reported quarterly revenue. Given the general focus of this blog on enterprise and cloud computing, however, IBM’s recent 2Q15 report can’t be ignored. Although it continued IBM’s recent string of negative quarterly results, the z and cloud proved to be bright spots.

Infographic - IBM Q2 2015 Earnings - Cloud - July 20 2015 - Final

Strong IBM cloud performance, Q2 2015 (click to enlarge)

As IBM reported on Monday: Revenues from z Systems mainframe server products increased 9 percent compared with the year-ago period (up 15 percent adjusting for currency).  Total delivery of z Systems computing power, as measured in MIPS, increased 24 percent.  Revenues from Power Systems were down 1 percent compared with the 2014 period (up 5 percent adjusting for currency).

It’s not clear when and how Power Systems will come back. IBM has opened up the Power platform through the Open Power Foundation. A good move in theory, which DancingDinosaur applauds. Still, much depends on the Foundation gaining increased momentum and individual members rolling out successful Power-based products. The roadmap for POWER8, POWER9, and beyond looks promising but how fast products will arrive is unclear. There also is potential for the commoditization of the Power platform, a welcome development in many quarters, but commoditization’s impact on future revenue also is not clear.

Cloud revenue was up more than 70 percent, adjusting for currency and divested businesses; up more than 50 percent as reported, according to IBM. Given that cloud, along with mobile and analytics, has been designated strategic by IBM this is an encouraging development. The company’s cloud strategy is starting to bear fruit.

The big question hanging over every vendor’s cloud strategy is how to make money at it. One of the appealing aspects of the cloud in terms of cost and pricing for IT-using organizations is what amounts to a race to the bottom. With pricing immediately apparent and lower pricing just a click away it has become a feast for the bottom grazers to whom the lowest price is all that matters. For companies like IBM and Oracle, which also has declared cloud a strategic initiative, and other large legacy enterprise platform providers the challenge is to be competitive on price while differentiating their offerings in other ways. Clearly IBM has some unique cloud offerings in Watson and Bluemix and others but can they deliver enough revenue fast enough to offset the reduction in legacy platform revenue. Remember, x86 is off IBM’s menu.

Timothy Prickett Morgan, who writes frequently about IBM technology, also had plenty to say about IBM’s 2Q15 announcement, as did a zillion other financial and industry analyst. To begin he noted the irony of IBM promoting cloud computing, primarily an x86 phenomenon while trying to convince people that Power-based systems are cost competitive—which they can be—and will do a better job for many of those workloads, correct again.

Morgan also makes an interesting point in regard to the z: “IBM doesn’t have to push the System z mainframe so much as keep it on a Moore’s Law curve of its own and keep the price/performance improving to keep those customers in the mainframe fold.” That’s harder than it may seem; DancingDinosaur addressed the Moore’ Law issue last week here. As Morgan notes, with well over $1 trillion in software assets running on the mainframe, the 6,000 or so enterprises that use mainframes are unlikely to move off the platform because of the cost, disruption, and risk such a move would entail. Just ask Union-Pacific Railroad, which seems to be doing a slow-motion platform migration off the mainframe that seemingly may never actually end. Morgan concludes: “IBM can count on a certain level of money from the System z line that it just cannot with the Power Systems line.”

As noted above, how much revenue Power can generate for IBM depends on how fast the Open Power Foundation members introduce products that expand the market and how many Power processors SoftLayer can absorb as the business unit expands its global footprint.  There also is the question of how many POWER8 servers Rackspace, a much larger cloud provider than SoftLayer, will take and whether the Rackspace initiative will catch on elsewhere.

In any event, IBM’s 2Q15 report showed enough positive momentum to encourage IT platform enthusiasts. For its part, DancingDinosaur is expecting a business class z13 in the coming months and more.

DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Open POWER Consortium Aims to Expand the POWER Ecosystem beyond IBM

August 7, 2013

With IBM’s August 6 announcement of new POWER partners, including Google, not only is IBM aiming to expand the variety of POWER workloads but establish an alternative ecosystem to Intel/ x86 that continues to dominate general corporate computing.  Through the new Open POWER Consortium, IBM will make  POWER hardware and software available for open development for the first time as well as offer open-source POWER firmware, the software that controls basic chip functions. By doing this, IBM and the consortium can enable innovative customization in creating new styles of server hardware for a variety of computing workloads.

IBM has a long history of using open consortiums to grab a foothold in different markets;  as it did with Eclipse (open software development tools), Linux (open portable operating system), KVM (open hypervisor and virtualization), and OpenStack (open cloud interoperability). In each case, IBM had proprietary technologies but could use the open source consortium strategy to expand market opportunities at the expense of entrenched proprietary competitors like Microsoft or VMware.  The Open POWER Consortium opens a new front against Intel, which already is scrambling to fend off ARM-based systems and other lightweight processors.

The establishment of the Open POWER Consortium also reinforces IBM’s commitment to the POWER platform in the face of several poor quarters. The commitment to POWER has never really wavered, insists an IBM manager, despite what financial analysts might hint at. Even stronger evidence of that commitment to POWER is POWER8, which is on track for 2014 if not sooner, and POWER9, which is currently in development, he confirmed.

As part of its initial collaboration within the consortium, IBM reported it and NVIDIA will integrate NVIDIA’s CUDA GPU and POWER.  CUDA is a parallel computing platform and programming model that enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU).  GPUs increasingly are being used to boost overall system performance, not just graphics performance. The two companies envision powerful computing systems based on NVIDIA GPUs and IBM’s POWER CPUs  and represent an example of the new kind of systems the open consortium can produce.

However, don’t expect immediate results.  The IBM manager told DancingDinosaur that the fruits of any collaboration won’t start showing up until sometime next year. Even the Open POWER Collaboration website has yet to post anything. The consortium is just forming up; IBM expects the public commitment of Google to attract other players, which IBM describes as the next generation of data-center innovators.

As for POWER users, this can only be a good thing. IBM is not reducing its commitment to the POWER roadmap, plus users will be able to enjoy whatever the new players bring to the POWER party, which could be considerable. In the meantime, the Open POWER Consortium welcomes any firm that wants to innovate on the POWER platform and participate in an open, collaborative effort.

An even more interesting question may be where else will IBM’s interest in open systems and open consortiums take it. IBM remains “very focused on open and it’s a safe bet that IBM will continue to support open technologies and groups that support that,” the IBM manager told DancingDinosaur.  IBM, however, has nothing to announce after the Open POWER Consortium. Hmm, might a z/OS open collaborative consortium someday be in the works?

SHARE will be in Boston next week. DancingDinosaur expects to be there and will report on the goings-on. Hope to see some of you there.  There also are plans for a big IBM System z/Power conference, Enterprise Systems 2013, toward to end of October in Florida.  Haven’t seen many details yet, but will keep you posted as they come in.


%d bloggers like this: