Posts Tagged ‘QISKit’

IBM Introduces 53 Qubit Quantum Machine

September 23, 2019

IBM made two major system announcements within just a couple of weeks: On Sept. 18 IBM announced a 53 qubit guantum machine. The week before, IBM introduced its latest mainframe, the z15. Already buzz is circulating of a z16 in two years, about a normal release cycle for the next generation of  an IBM mainframe. 

Quantum computer up close
IBM’s largest quantum machine at 53 qubits

Along with the 53 qubit machine IBM announced the opening of a Quantum Computation Center in New York state. The new center expands, according to IBM, its fleet of quantum computing systems for commercial and research activity that exist beyond the confines of experimental lab environments. IBM’s offerings run from 5 to 10 to 20 to, now, 53 qubits. These are actual quantum machines hosted by IBM in the cloud, not just simulations. 

The IBM Quantum Computation Center will support the growing needs of a community of over 150,000 registered users and nearly 80 commercial clients, academic institutions and research laboratories to advance quantum computing and explore practical applications. To date, notes IBM, this  global community of users have run more than 14 million experiments on IBM’s quantum computers through the cloud since 2016, and published more than 200 scientific papers. To meet growing demand for access to real quantum hardware, ten quantum computing systems are now online through IBM’s Quantum Computation Center. The fleet is composed of five 20-qubit systems, one 14-qubit system, and four 5-qubit systems. Five of the systems now have a quantum volume of 16 – a measure of the power of a quantum computer used by IBM demonstrating a new sustained performance milestone.

IBM’s quantum systems are optimized for the reliability and reproducibility of programmable multi-qubit operations. Due to these factors, the systems enable state-of-the-art quantum computational research with 95 percent availability, according to the company.

Within one month, IBM’s commercially available quantum fleet will grow to 14 systems, including the new 53-qubit quantum computer, the single largest universal quantum system made available for external access in the industry to date. The new system offers a larger lattice and gives users the ability to run even more complex entanglement and connectivity experiments. Industry observers note that serious work requires a minimum of 200 qubits, probably just a couple more product intros away. 

Advances in quantum computing could open the door to future scientific discoveries such as new medicines and materials, vast improvements in the optimization of supply chains, and new ways computers to model financial data to make better investments. Examples of IBM’s  work with clients and partners, include:

  • J.P. Morgan Chase and IBM posted on arXiv,  Option Pricing using Quantum Computers, a methodology to price financial options and portfolios of such options, on a gate-based quantum computer. This resulted in an algorithm that provides a quadratic speedup, i.e. whereby classically computers need millions of samples, this methodology requires only a few thousands of samples to achieve the same result, It allows financial analysts to perform the option pricing and risk analysis in near real time. The implementation is available as open source in Qiskit Finance. 
  • Mitsubishi Chemical, Keio University and IBM simulated the initial steps of the reaction mechanism between lithium and oxygen in lithium-air batteries. Also available on arXiv,  this represents a first step in modeling the entire lithium-oxygen reaction on a quantum computer. Better understanding of this interaction could lead to more efficient batteries for mobile devices or automotive vehicles.

In the meantime IBM continues to simulate quantum algorithms on conventional supercomputers. According to one 2-year old report: at roughly 50 qubits, existing methods for calculating quantum amplitudes require either too much computation to be practical, or more memory than is available on any existing supercomputer, or both. You can bet that IBM or somebody else will push beyond 53 qubits pretty quickly. Google already claims a 72-qubit device, but it hasn’t let outsiders run programs on it. IBM has been making quantum available via the cloud since 2016. Other companies putting quantum computers in the cloud, include IBM’s Quantum Computation Center.IBM’s Quantum Computation Center. Others include  Rigetti Computing,  and Canada’s D-Wave

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog, and see more of his work at http://technologywriter.com/ 

IBM Pushes Quantum for Business

June 20, 2019

Other major system providers pursuing quantum computing initiatives, but none are pursuing it as methodically or persistently as IBM. In a recent announcement:  IBM’s Institute for Business Value introduced a five-step roadmap to bring quantum computing to your organization.

Into IBM Q computation center: dilution refrigerators with microwave electronics (middle) that provide Q Network cloud access to 20-qubit processor. (Credit: Connie Zhou)

Start by familiarizing yourself with superposition and entanglement, which enable quantum computers to solve problems intractable for today’s conventional computers:

Superposition. A conventional computer uses binary bits that can only depict either 1 or 0. Instead, quantum computers use qubits that can depict a 1 or 0, or any combination by superposition of the qubits’ possible states. This supplies quantum computers with an exponential set of states they can explore to solve certain types of problems better than conventional computers.

Entanglement. In the quantum world, two qubits located even light-years apart can still act in ways that are strongly correlated. Quantum computing takes advantage of this entanglement to encode problems that exploit this correlation between qubits.

The quantum properties of superposition and entanglement enable quantum computers to rapidly explore an enormous set of possibilities to identify an optimal answer that could maximize business value. As future quantum computers can calculate certain answers exponentially faster than today’s conventional machines, they will enable tackling business problems that are exponentially more complex.

Despite conventional computers’ limitations, quantum computers are not expected to replace them in the foreseeable future. Instead, hybrid quantum-conventional architectures are expected to emerge that, in effect, outsource portions of difficult problems to a quantum computer.

Already Quantum computing appears ripe to transform certain industries. For instance, current computational chemistry methods rely heavily on approximation because the exact equations cannot be solved by conventional computers. Similarly, quantum algorithms are expected to deliver accurate simulations of molecules over longer timescales, currently impossible to model precisely. This could enable life-saving drug discoveries and significantly shorten the number of years required to develop complex pharmaceuticals.

Additionally, quantum computing’s anticipated ability to solve today’s impossibly complex logistics problems could produce considerable cost savings and carbon footprint reduction. For example, consider improving the global routes of the trillion-dollar shipping industry (see Dancing Dinosaur’s recent piece on blockchain gaining traction). If quantum computing could improve container utilization and shipping volumes by even a small fraction, this could save shippers hundreds of millions of dollars. To profit from quantum computing’s advantages ahead of competitors, notes IBM, some businesses are developing expertise now to explore which use cases may benefit their own industries as soon as the technology matures.

To stimulate this type of thinking, IBM’s Institute of Business Value has come up with 5 steps to get you started:

  1. Identify your quantum champions. Assign this staff to learn more about the prospective benefits of quantum computing. Just designate some of your leading professionals as quantum champions and charge them with understanding quantum computing, its potential impact on your industry, your competitors’ response, and how your business might benefit. Have these champions report periodically to senior management to educate the organization and align progress to strategic objectives.
  2. Begin identifying quantum computing use cases and associated value propositions. Have your champions identify specific areas where quantum computing could propel your organization ahead of competitors. Have these champions monitor progress in quantum application development to track which use cases may be commercialized sooner. Finally, ensure your quantum exploration links to business results. Then select the most promising quantum computing applications, such as creating breakthrough products and services or new ways to optimize the supply chain.
  3. Experiment with real quantum systems. Demystify quantum computing by trying out a real quantum computer (IBM’s Q Experience). Have your champions get a sense for how quantum computing may solve your business problems and interface with your existing tools. A quantum solution may not be a fit for every business issue. Your champions will need to focus on solutions to address your highest priority use cases, ones that conventional computers can’t practically solve.
  4. Chart your quantum course. This entails constructing a quantum computing roadmap with viable next steps for the purpose of pursuing problems that could create formidable competitive barriers or enable sustainable business advantage. To accelerate your organization’s quantum readiness, consider joining an emerging quantum community. This can help you gain better access to technical infrastructure, evolving industry applications, and expertise that can enhance your development of specific quantum applications.
  5. Lastly, be flexible about your quantum future. Quantum computing is rapidly evolving. Seek out technologies and development toolkits that are becoming the industry standard, those around which ecosystems are coalescing. Realize that new breakthroughs may cause you to adjust your approach to your quantum development process, including changing your ecosystem partners. Similarly, your own quantum computing needs may evolve over time, particularly as you improve your understanding of which business issues can benefit most from quantum solutions.

Finally, actually have people in your organization try a quantum computer, such as through IBM’s Q program and Qiskit, a free development tool. Q provides a free 16-qubit quantum computer you don’t have to configure or keep cool and stable. That’s IBM’s headache.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog, and see more of his work at technologywriter.com.

IBM Grows Quantum Ecosystem

April 27, 2018

It is good that you aren’t dying to deploy quantum computing soon because IBM readily admits that it is not ready for enterprise production now or in several weeks or maybe several months. IBM, however, continues to assemble the building blocks you will eventually need when you finally feel the urge to deploy a quantum application that can address a real problem that you need to resolve.

cryostat with prototype of quantum processor

IBM is surprisingly frank about the state of quantum today. There is nothing you can do at this point that you can’t simulate on a conventional or classical computer system. This situation is unlikely to change anytime soon either. For years to come, we can expect hybrid quantum and conventional compute environments that will somehow work together to solve very demanding problems, although most aren’t sure exactly what those problems will be when the time comes. Still at Think earlier this year IBM predicted quantum computing will be mainstream in 5 years.

Of course, IBM has some ideas of where the likely problems to solve will be found:

  • Chemistry—material design, oil and gas, drug discovery
  • Artificial Intelligence—classification, machine learning, linear algebra
  • Financial Services—portfolio optimization, scenario analysis, pricing

It has been some time since the computer systems industry had to build a radically different kind of compute discipline from scratch. Following the model of the current IT discipline IBM began by launching the IBM Q Network, a collaboration with leading Fortune 500 companies and research institutions with a shared mission. This will form the foundation of a quantum ecosystem.  The Q Network will be comprised of hubs, which are regional centers of quantum computing R&D and ecosystem; partners, who are pioneers of quantum computing in a specific industry or academic field; and most recently, startups, which are expected to rapidly advance early applications.

The most important of these to drive growth of quantum are the startups. To date, IBM reports eight startups and it is on the make for more. Early startups include QC Ware, Q-Ctrl, Cambridge Quantum Computing (UK), which is working on a compiler for quantum computing, 1Qbit based in Canada, Zapata Computing located at Harvard, Strangeworks, an Austin-based tool developer, QxBranch, which is trying to apply classical computing techniques to quantum, and Quantum Benchmark.

Startups get membership in the Q network and can run experiments and algorithms on IBM quantum computers via cloud-based access; provide deeper access to APIs and advanced quantum software tools, libraries, and applications; and have the opportunity to collaborate with IBM researchers and technical SMEs on potential applications, as well as with other IBM Q Network organizations. If it hasn’t become obvious yet, the payoff will come from developing applications that solve recognizable problems. Also check out QISKit, a software development kit for quantum applications available through GitHub.

The last problem to solve is the question around acquiring quantum talent. How many quantum scientists, engineers, or programmers do you have? Do you even know where to find them? The young people excited about computing today are primarily interested in technologies to build sexy apps using Node.js, Python, Jupyter, and such.

To find the people you need to build quantum computing systems you will need to scour the proverbial halls of MIT, Caltech, and other top schools that produce physicists and quantum scientists. A scan of salaries for these people reveals $135,000- $160,000, if they are available at all.

The best guidance from IBM on starting is to start small. The industry is still at the building block stage; not ready to throw specific application at real problems. In that case sign up for IBM’s Q Network and get some of your people engaged in the opportunities to get educated in quantum.

When DancingDinosaur first heard about quantum physics he was in a high school science class decades ago. It was intriguing but he never expected to even be alive to see quantum physics becoming real, but now it is. And he’s still here. Not quite ready to sign up for QISKit and take a small qubit machine for a spin in the cloud, but who knows…

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.


%d bloggers like this: