Posts Tagged ‘Quantum computing’

Meet IBM’s New CEO

February 6, 2020

Have to admire Ginny Rometty. She survived 19 consecutive losing quarters (one quarter shy of 5 years), which DancingDinosaur and the rest of the world covered with monotonous regularity, and she was not bounced out until this January. Memo to readers: Keep that in mind if you start feeling performance heat from top management. Can’t imagine another company that would tolerate it but what do I know.

Arvind Krishna becomes the Chief Executive Officer and a member of the I BM Board of Directors effective April 6, 2020. Krishna is currently IBM Senior Vice President for Cloud and Cognitive Software, and was a principal architect of the company’s acquisition of Red Hat. The cloud/Red Hat strategy has only just started to show signs of payback.

As IBM writes: Under Rometty’s leadership, IBM acquired 65 companies, built out key capabilities in hybrid cloud, security, industry and data, and AI both organically and inorganically, and successfully completed one of the largest technology acquisitions in history (Red Hat).  She reinvented more than 50% of IBM’s portfolio, built a $21 billion hybrid cloud business and established IBM’s leadership in AI, quantum computing, and blockchain, while divesting nearly $9 billion in annual revenue to focus the portfolio on IBM’s high value, integrated offerings. Part of that was the approximately $34 billion Red Hat acquisition, IBM’s, and possibly the IT industry’s, biggest to date. Rometty isn’t going away all that soon; she continues in some executive Board position.

It is way too early to get IBM 1Q2020 results, which will be the last quarter of Rometty’s reign. The fourth quarter of 2019, at least was positive, especially after all those quarters of revenue loss. The company reported  $21.8 billion in revenue, up 0.1 percent. Red Hat revenue was up 24 percent. Cloud and cognitive systems were up 9 percent while systems, which includes the z, was up 16 percent. 

Total cloud revenue, the new CEO Arvind Krishna’s baby, was up 21 percent. Even with z revenue up more than cloud and cognitive systems, it is probably unlikely IBM will easily find a buyer for the z soon. If IBM dumps it, they will probably have to pay somebody to take it despite the z’s faithful, profitable blue chip customer base. 

Although the losing streak has come to an end Krishna still faces some serious challenges.  For example, although DancingDinosaur has been enthusiastically cheerleading quantum computing as the future there is no proven business model there. Except for some limited adoption by a few early adopters, there is no widespread groundswell of demand for quantum computing and the technology has not yet proven itself useful. Also there is no ready pool of skilled quantum talent. If you wanted to try quantum computing would you even know what to try or where to find skilled people?

Even in the area of cloud computing where IBM finally is starting to show some progress the company has yet to penetrate the top tier of players. These players–Amazon, Google, Microsoft/Azur–are not likely to concede market share.

So here is DancingDinosaur’s advice to Krishna: Be prepared to scrap for every point of cloud share and be prepared to spin a compelling case around quantum computing. Finally, don’t give up the z until the accountants and lawyers force you, which they will undoubtedly insist on.To the contrary, slash the z prices and make it an irresistible bargain. 

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog, and see more of his work at http://technologywriter.com/ 

2020 IBM Quantum Gains

January 13, 2020

IBM returned from the holidays announcing a flurry of activity around quantum computing. Specifically, it has expanded its set of Q Network partners, including a range of commercial, academic, startup, government, and research entities.  

IBM Qiskit screen

The Q Network now includes over 100 organizations, across multiple industries, including: Airline, Automotive, Banking and Finance, Energy, Insurance, Materials, and Electronics.  Specifically, Anthem, Delta Air Lines, Goldman Sachs, Wells Fargo, and Woodside Energy are among the latest organizations to begin to explore practical applications using quantum computing.

In addition to these industry leaders, a number of academic, government research labs and startups have also joined the IBM Q Network, including the Georgia Institute of Technology (Georgia Tech), Stanford University, Los Alamos National Laboratory, AIQTech, Beit, Quantum Machines, Tradeteq, and Zurich Instruments.

These organizations join over 200,000 users, who have run hundreds of billions of executions on IBM’s quantum systems and simulators through the IBM Cloud. This has led to the publication of more than 200 third-party research papers on practical quantum applications.

More quantum: IBM also recently announced the planned installation of the first two IBM Q System One commercial universal quantum computers outside the US – one with Europe’s leading organization for applied research, Fraunhofer-Gesellschaft, in Germany; another with The University of Tokyo. Both are designed to advance country-wide research and provide an education framework program to engage universities, industry, and government to grow a quantum computing community and foster new economic opportunities.

Growing a quantum computing community should quickly become a critical need and, more likely, a major headache. My own cursory search of employment sites revealed no quantum computing openings  listed. Just a few casual inquiries suggest curiosity about quantum computing but not much insight or readiness or actual skills or openings to generate action. 

Still, even at this early stage things already are happening.

Anthem, Inc., a leading health benefits company is expanding its research and development efforts to explore how quantum computing may further enhance the consumer healthcare experience. For Anthem, quantum computing offers the potential to analyze vast amounts of data inaccessible to classical computing while also enhancing privacy and security. It also brings the potential to help individuals through the development of more accurate and personalized treatment options while improving the prediction of health conditions.

Delta Air Lines joined the IBM Q Hub at North Carolina State University to embark on a multi-year collaborative effort with IBM to explore the potential capabilities of quantum computing in transforming experiences for customers and employees as they encounter challenges throughout the  travel day.

Quantum Machines (QM), a provider of control and operating systems for quantum computers, brings customers among the leading players in the field, including multinational corporations, academic institutions, start-ups and national research labs. As part of the IBM and QM collaboration, a compiler between IBM’s quantum computing programming languages, like Qiskit (see graphic above),  and those of QM is being developed for use by QM’s customers. Such development will lead to the increased adoption of IBM’s open-sourced programming languages across the industry.

The Los Alamos National Laboratory also has joined as an IBM Q Hub to greatly help the lab’s research efforts, including developing and testing near-term quantum algorithms and formulating strategies for mitigating errors on quantum computers. A 53-qubit system will also allow Los Alamos to benchmark the abilities to perform quantum simulations on real quantum hardware and perhaps to finally push beyond the limits of classical computing. 

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog, and see more of his work at http://technologywriter.com/ 

IBM Introduces 53 Qubit Quantum Machine

September 23, 2019

IBM made two major system announcements within just a couple of weeks: On Sept. 18 IBM announced a 53 qubit guantum machine. The week before, IBM introduced its latest mainframe, the z15. Already buzz is circulating of a z16 in two years, about a normal release cycle for the next generation of  an IBM mainframe. 

Quantum computer up close
IBM’s largest quantum machine at 53 qubits

Along with the 53 qubit machine IBM announced the opening of a Quantum Computation Center in New York state. The new center expands, according to IBM, its fleet of quantum computing systems for commercial and research activity that exist beyond the confines of experimental lab environments. IBM’s offerings run from 5 to 10 to 20 to, now, 53 qubits. These are actual quantum machines hosted by IBM in the cloud, not just simulations. 

The IBM Quantum Computation Center will support the growing needs of a community of over 150,000 registered users and nearly 80 commercial clients, academic institutions and research laboratories to advance quantum computing and explore practical applications. To date, notes IBM, this  global community of users have run more than 14 million experiments on IBM’s quantum computers through the cloud since 2016, and published more than 200 scientific papers. To meet growing demand for access to real quantum hardware, ten quantum computing systems are now online through IBM’s Quantum Computation Center. The fleet is composed of five 20-qubit systems, one 14-qubit system, and four 5-qubit systems. Five of the systems now have a quantum volume of 16 – a measure of the power of a quantum computer used by IBM demonstrating a new sustained performance milestone.

IBM’s quantum systems are optimized for the reliability and reproducibility of programmable multi-qubit operations. Due to these factors, the systems enable state-of-the-art quantum computational research with 95 percent availability, according to the company.

Within one month, IBM’s commercially available quantum fleet will grow to 14 systems, including the new 53-qubit quantum computer, the single largest universal quantum system made available for external access in the industry to date. The new system offers a larger lattice and gives users the ability to run even more complex entanglement and connectivity experiments. Industry observers note that serious work requires a minimum of 200 qubits, probably just a couple more product intros away. 

Advances in quantum computing could open the door to future scientific discoveries such as new medicines and materials, vast improvements in the optimization of supply chains, and new ways computers to model financial data to make better investments. Examples of IBM’s  work with clients and partners, include:

  • J.P. Morgan Chase and IBM posted on arXiv,  Option Pricing using Quantum Computers, a methodology to price financial options and portfolios of such options, on a gate-based quantum computer. This resulted in an algorithm that provides a quadratic speedup, i.e. whereby classically computers need millions of samples, this methodology requires only a few thousands of samples to achieve the same result, It allows financial analysts to perform the option pricing and risk analysis in near real time. The implementation is available as open source in Qiskit Finance. 
  • Mitsubishi Chemical, Keio University and IBM simulated the initial steps of the reaction mechanism between lithium and oxygen in lithium-air batteries. Also available on arXiv,  this represents a first step in modeling the entire lithium-oxygen reaction on a quantum computer. Better understanding of this interaction could lead to more efficient batteries for mobile devices or automotive vehicles.

In the meantime IBM continues to simulate quantum algorithms on conventional supercomputers. According to one 2-year old report: at roughly 50 qubits, existing methods for calculating quantum amplitudes require either too much computation to be practical, or more memory than is available on any existing supercomputer, or both. You can bet that IBM or somebody else will push beyond 53 qubits pretty quickly. Google already claims a 72-qubit device, but it hasn’t let outsiders run programs on it. IBM has been making quantum available via the cloud since 2016. Other companies putting quantum computers in the cloud, include IBM’s Quantum Computation Center.IBM’s Quantum Computation Center. Others include  Rigetti Computing,  and Canada’s D-Wave

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog, and see more of his work at http://technologywriter.com/ 

IBM Advances Commercial Quantum Computing

August 7, 2019

The reason IBM and others are so eager for quantum computing is simple: money. Recent efforts have demonstrated that quantum analytics can process massive amounts of transactions quickly and accurately, as much as nearly $70 Trillion last year, according to the World Bank.

“These are enormous amounts of money,” says mathematician Cornelis Oosterlee of Centrum Wiskunde & Informatica, a national research institute in the Netherlands for a piece in Wired Magazine. “Some single trades involve numbers that are scary to imagine”—part of a company’s pension fund, say, or a university endowment, he continues.

Of course, this isn’t exactly new. Large organizations with access to huge amounts of resources devote inordinate quantities of those resources in an effort to predict how much their assets will be worth in the future.  If they could do this modeling faster or more accurately or more efficiently, maybe just shaving off a few seconds here or there; well you can do the arithmetic.

Today these calculations are expensive to run, requiring either an in-house supercomputer or two or a big chunk of cloud computing processors and time. But if or when quantum computing could deliver on some of its theoretical promise to drive these analyses faster, more accurately, more efficiently and cheaper that’s something IBM could build into the next generation of systems.. 

And it is not just IBM. From Google on down to startups, developers are working on machines that could one day beat conventional computers at various tasks, such as classifying data through machine learning or inventing new drugs—and running complex financial calculations. In a step toward delivering on that promise, researchers affiliated with IBM and J.P. Morgan recently figured out how to run a simplified risk calculation on an actual quantum computer.

Using one of IBM’s machines, located in Yorktown Heights, New York, the researchers demonstrated they could simulate the future value of a financial product called an option. Currently, many banks use what’s called  the Monte Carlo method to simulate prices of all sorts of financial instruments. In essence, the Monte Carlo method models the future as a series of forks in the road. A company might go under; it might not. President Trump might start a trade war; he might not. Analysts estimate the likelihood of such scenarios, then generate millions of alternate futures at random. To predict the value of a financial asset, they produce a weighted average of these millions of possible outcomes.

Quantum computers are particularly well suited to this sort of probabilistic calculation, says Stefan Woerner, who led the IBM team. Classical (or conventional) computers—the kind most of us use—are designed to manipulate bits. Bits are binary, having a value of either 0 or 1. Quantum computers, on the other hand, manipulate qubits, which represent an in-between state. A qubit is like a coin flipping in the air—neither heads nor tails, neither 0 nor 1 but some probability of being one or the other. And because a qubit has unpredictability built in, it promises to  be a natural tool for simulating uncertain outcomes.

Woerner and his colleagues ran their Monte Carlo calculations using three of the 20 qubits available on their quantum machine. The experiment was too simplistic to be useful commercially, but it’s a promising proof of concept; once bigger and smoother-running quantum computers are available, the researchers hope to execute the algorithm faster than conventional machines.

But this theoretical advantage is just that, theoretical. Existing machines remain too error-ridden to compute consistently, In addition, financial institutions already have ample computing power available, onsite or in the cloud.. And they will have even more as graphics processing units (GPU), which can execute many calculations in parallel, come on line. A quantum computer might well be faster than an individual chip but it’s unclear whether it could beat a fleet of high performance GPUs in a supercomputer.

Still, it’s noteworthy that the IBM team was able to implement the algorithm on actual hardware, says mathematician Ashley Montanaro of the University of Bristol in the UK, who was not involved with the work. Academics first developed the mathematical proofs behind this quantum computing algorithm in 2000, but it remained a theoretical exercise for years. Woerner’s group took a 19-year-old recipe and figured out how to make it quantum-ready on actual quantum hardware.

Now they’re looking to improve their algorithm by using more qubits. The most powerful quantum computers today have fewer than 200 qubits, Practitioners suggest it may take thousands to consistently beat conventional methods.

But demonstrations like Woerner’s, even with their limited scope, are useful in that they apply quantum computers to problems organizationz actually want to solve, And that is what it will take if IBM expects to build quantum computing into a viable commercial business.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog, and see more of his work at technologywriter.com. 

IBM Continues Cranking Up Blockchain

August 16, 2018

 

 

Somehow between quantum computing, AI, and hybrid clouds IBM is managing to squeeze in blockchain as an active, growing business. For instance, a previously unnamed collaborative effort between the world’s largest shipping company, Maersk, and IBM has now grown to 92 participants and been dubbed TradeLens.

IBM has 92 participants in the TradeLens blockchain network

DancingDinosaur long considered blockchain as a natural for the Z due to its zero downtime reliability and high certified levels of security (EAL4+). The most recent models include IBM’s automated pervasive encryption. No more wasting time making decisions about what to encrypt. The Z just encrypts it all with minimal overhead penalty. Your applications and workloads won’t even notice and compliance audits become a breeze.

TradeLens is emerging from its beta to accept early-adopter applications and announced a new custom contract service for executing complex shipping orders with fewer middlemen. “We have seen a lot of skeptics talk about the validity of blockchain solutions,” said Marie Wieck, IBM general manager and head of blockchain. “And I think with over 90 organizations and more than 150 million events captured on the system, “we really are seeing the proof,” she adds.

The initiative now includes Germany-based Hamburg Sud, which Maersk bought last year for $4 billion, and U.S.-based Pacific International Lines, along with numerous customs authorities, cargo owners and freight forwarders. Collectively, the shipping companies account for more than 20% of the global supply chain market share, with 20 port and terminal operators in Singapore, the U.S., Holland, and more serving 235 marine gateways around the world.

TradeLens, in practice, gives users access to their own blockchain node similar to those on the bitcoin blockchain that lets users send money without the need of banks. In the case of TradeLens a shipper can cut out as many as five middlemen, even for simple queries such as identifying the location of a shipping container.

At stake is what Transparency Market Research expects will be a $32.9 billion global supply-chain software business by 2026. As far back as 2015, the World Trade Organization estimated that simplifying the global supply chain could reduce costs among users by as much as 17.5%, with developing nations expected to see as much as a 35% increase in exports as they leapfrog over legacy technology platforms.

The cooperative effort between Maersk and IBM still needs to make money. To do so, the two companies have shifted the business model from a stand-alone joint-venture to the intellectual property that comprises TradeLens being co-owned and jointly developed.

But the new cooperative structure could unnerve some potential customers. To offset concerns, the CEO of Maersk’s New Jersey-based TradeLens operation, Mike White, says a number of barriers have been put in place, including contractual restrictions on sharing data and technical barriers in the form of the independently managed blockchain nodes.

If successful, TradeLens might literally embody the common refrain among blockchain users that “all ships will rise” when they use a shared, distributed ledger. Facing decreasing global freight rates, Maersk last quarter became just the latest container shipper to cut profit forecasts.

Among competitors aiming to cut those costs and increase profits is the former head of blockchain at accounting firm Deloitte, who earlier this year announced he was raising $100 million to launch a supply chain platform using the ethereum blockchain. Similarly, blockchain startup Fr8 is preparing to raise $60 million via an initial coin offering to build its own blockchain logistics platform.

“The value proposition is for all ecosystem participants,” said White. “The ability to get better access to more real-time data, to have better visibility end-to-end, and to be able to connect one-to-many in a more efficient and effective way, makes the cost of getting that information lower, makes the ability to manage your own business better, and makes the ability to service your customers that much stronger.”

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

 

IBM Continues Quantum Push

June 8, 2018

IBM continued building out its Q Network ecosystem in May with the announcement of North Carolina State University, which is the first university-based IBM Q Hub in North America. As a hub. NC State will focus on accelerating industry collaborations, learning, skills development, and the implementation of quantum computing.

Scientists inside an open dilution fridge

NC State will work directly with IBM to advance quantum computing and industry collaborations, as part of the IBM Q Network’s growing quantum computing ecosystem. The school is the latest Q Network member. The network consists of individuals and organizations, including scientists, engineers, and business leaders, along with forward thinking companies, academic institutions, and national research labs enabled by IBM Q. Its mission: advancing quantum computing and launching the first commercial applications.

This past Nov. IBM announced a 50 qubit system. Shortly after Google announced Bristlecone, which claims to top that. With Bristlecone Google topped IBM for now with 72 qubits. However, that may not be the most important metric to focus on.

Stability rather than the number of qubits should be the most important metric. The big challenge today revolves around the instability of qubits. To maintain qubit machines stable enough the systems need to keep their processors extremely cold (Kelvin levels of cold) and protect them from external shocks. This is not something you want to build into a laptop or even a desktop. Instability leads to inaccuracy, which defeats the whole purpose.  Even accidental sounds can cause the computer to make mistakes. For minimally acceptable error rates, quantum systems need to have an error rate of less than 0.5 percent for every two qubits. To drop the error rate for any qubit processor, engineers must figure out how software, control electronics, and the processor itself can work alongside one another without causing errors.

50 cubits currently is considered the minimum number for serious business work. IBM’s November announcement, however, was quick to point out that “does not mean quantum computing is ready for common use.” The system IBM developed remains extremely finicky and challenging to use, as are those being built by others. In its 50-qubit system, the quantum state is preserved for 90 microseconds—record length for the industry but still an extremely short period of time.

Nonetheless, 50 qubits have emerged as the minimum number for a (relatively) stable system to perform practical quantum computing. According to IBM, a 50-qubit machine can do things that are extremely difficult to even simulate with the fastest conventional system.

Today, IBM offers the public IBM Q Experience, which provides access to 5- and 16-qubit systems; and the open quantum software development kit, QISKit, maybe the first quantum SDK. To date, more than 80,000 users of the IBM Q Experience, have run more than 4 million experiments and generated more than 65 third-party research articles.

Still, don’t expect to pop a couple of quantum systems into your data center. For the immediate future, the way to access and run qubit systems is through the cloud. IBM has put qubit systems in the cloud, where they are available to participants in its Q Network and Q Experience.

IBM has also put some of its conventional systems, like the Z, in the cloud. This raises some interesting possibilities. If IBM has both quantum and conventional systems in the cloud, can the results of one be accessed or somehow shared with the other. Hmm, DancingDinosaur posed that question to IBM managers earlier this week at a meeting in North Carolina (NC State, are you listening?).

The IBMers acknowledged the possibility although in what form and what timeframe wasn’t even at the point of being discussed. Quantum is a topic DancingDinosaur expects to revisit regularly in the coming months or even years. Stay tuned.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Leverages Strategic Imperatives to Win in Cloud

March 16, 2018

Some people may have been ready to count out IBM in the cloud. The company, however, is clawing its way back into contention faster than many imagined. In a recent Forbes Magazine piece, IBM credits 16,000 AI engagements, 400 blockchain engagements, and a couple of quantum computing pilots as driving its return as a serious cloud player.

IBM uses blockchain to win the cloud

According to Fortune, IBM has jumped up to third in cloud revenue with $17 billion, ranking behind Microsoft with $18.6 billion and Amazon, with $17.5. Among other big players, Google comes in seventh with $3 billion

In the esoteric world of quantum computing IBM is touting live projects underway with JPMorganChase, Daimler, and others. Bob Evans, a respected technology writer and now the principle of Evans Strategic Communications, notes that the latest numbers “underscore not only IBM’s aggressive moves into enterprise IT’s highest-potential markets,” but also the legitimacy of the company’s claims that it has joined the top ranks of the competitive cloud-computing marketplace alongside Microsoft and Amazon.

As reported in the Fortune piece, CEO Ginni Rometty, speaking to a quarterly analyst briefing, declared: “While IBM has a considerable presence in the public-cloud IaaS market because many of its clients require or desire that, it intends to greatly differentiate itself from the big IaaS providers via higher-value technologies such as AI, blockchain, cybersecurity and analytics.” These are the areas that Evans sees as driving IBM into the cloud’s top tier.

Rometty continued; “I think you know that for us the cloud has never been about having Infrastructure-as-a-Service-only as a public cloud, or a low-volume commodity cloud; Frankly, Infrastructure-as-a-Service is almost just a dialtone. For us, it’s always been about a cloud that is going to be enterprise-strong and of which IaaS is only a component.”

In the Fortune piece she then laid out four strategic differentiators for the IBM Cloud, which in 2017 accounted for 22% of IBM’s revenue:

  1. “The IBM Cloud is built for “data and applications anywhere,” Rometty said. “When we say you can do data and apps anywhere, it means you have a public cloud, you have private clouds, you have on-prem environments, and then you have the ability to connect not just those but also to other clouds. That is what we have done—all of those components.”
  2. The IBM Cloud is “infused with AI,” she continued, alluding to how most of the 16,000 AI engagements also involve the cloud. She cited four of the most-popular ways in which customers are using AI: customer service, enhancing white-collar work, risk and compliance, and HR.
  3. For securing the cloud IBM opened more than 50 cybersecurity centers around the world to ensure “the IBM Cloud is secure to the core,” Rometty noted.
  4. “And perhaps this the most important differentiator—you have to be able to extend your cloud into everything that’s going to come down the road, and that could well be more cyber analytics but it is definitely blockchain, and it is definitely quantum because that’s where a lot of new value is going to reside.”

You have to give Rometty credit: She bet big that IBM’s strategic imperatives, especially blockchain and, riskiest of all, quantum computing would eventually pay off. The company had long realized it couldn’t compete in high volume, low margin businesses. She made her bet on what IBM does best—advanced research—and stuck with it.  During those 22 consecutive quarters of revenue losses she stayed the course and didn’t publicly question the decision.

As Fortune observed: In quantum, IBM’s leveraging its first-mover status and has moved far beyond theoretical proposals. “We are the only company with a 50-qubit system that is actually working—we’re not publishing pictures of photos of what it might look like, or writings that say if there is quantum, we can do it—rather, we are scaling rapidly and we are the only one working with clients in development working on our quantum,” Rometty said.

IBM’s initial forays into commercial quantum computing are just getting started: JPMorganChase is working on risk optimization and portfolio optimization using IBM quantum computing;  Daimler is using IBM’s quantum technology to explore new approaches to logistics and self-driving car routes; and JSR is doing computational chemistry to create entirely new materials. None of these look like the payback is right around the corner. As DancingDinosaur wrote just last week, progress with quantum has been astounding but much remains to be done to get a functioning commercial ecosystem in place to support the commercialization of quantum computing for business on a large scale.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

The Rush to Quantum Computing

March 9, 2018

Are you excited about quantum computing? Are you taking steps to get ready for it? Do you have an idea of what you would like to do with quantum computing or a plan for how to do it? Except for the most science-driven organizations or those with incomprehensively complex challenges to solve DancingDinosaur can’t imagine this is the most pressing IT issue you are facing today.

Yet leading IT-based vendors are making astounding gains in moving quantum computing forward further and faster than the industry was even projecting a few months ago. This past Nov. IBM announced a 50 qubit system. Earlier this month Google announced Bristlecone, which claims to top that. With Bristlecone Google trumps IBM for now with 72 qubits. However, that may not be the most important metric to focus on.

Never heard of quantum supremacy? You are going to hear a lot about it in the coming weeks, months, and even years as the vendors battle for the quantum supremacy title. Here is how Wikipedia defines it: Quantum supremacy is the potential ability of quantum computing devices to solve problems that classical computers cannot. In computational complexity-theoretic terms, this generally means providing a super-polynomial speedup over the best known or possible classical algorithm. If this doesn’t send you racing to dig out your old college math book you were a better student than DancingDinosaur. In short, supremacy means beating the current best conventional algorithms. But you can’t just beat them; you have to do it using less energy or faster or some way that will demonstrate your approach’s advantage.

The issue resolves around the instability of qubits; the hardware needs to be sturdy to run them. Industry sources note that quantum computers need to keep their processors extremely cold (Kelvin levels of cold) and protect them from external shocks. Even accidental sounds can cause the computer to make mistakes. To operate in even remotely real-world settings, quantum processors also need to have an error rate of less than 0.5 percent for every two qubits. Google’s best came in at 0.6 percent using its much smaller 9-qubit hardware. Its latest blog post didn’t state Bristlecone’s error rate, but Google promised to improve on its previous results. To drop the error rate for any qubit processor, engineers must figure out how software, control electronics, and the processor itself can work alongside one another without causing errors.

50 cubits currently is considered the minimum number for serious business work. IBM’s November announcement, however, was quick to point out that “does not mean quantum computing is ready for common use.” The system IBM developed remains extremely finicky and challenging to use, as are those being built by others. In its 50-qubit system, the quantum state is preserved for 90 microseconds—record length for the industry but still an extremely short period of time.

Nonetheless, 50 qubits have emerged as the minimum number for a (relatively) stable system to perform practical quantum computing. According to IBM, a 50-qubit machine can do things that are extremely difficult to simulate without quantum technology.

The problem touches on one of the attributes of quantum systems.  As IBM explains, where normal computers store information as either a 1 or a 0, quantum computers exploit two phenomena—entanglement and superposition—to process information differently.  Conventional computers store numbers as sequences of 0 and 1 in memory and process the numbers using only the simplest mathematical operations, add and subtract.

Quantum computers can digest 0 and 1 too but have a broader array of tricks. That’s where entanglement and superposition come in.  For example, contradictory things can exist concurrently. Quantum geeks often cite a riddle dubbed Schrödinger’s cat. In this riddle the cat can be alive and dead at the same time because quantum systems can handle multiple, contradictory states. That can be very helpful if you are trying to solve huge data- and compute-intensive problems like a Monte Carlo simulation. After working at quantum computing for decades the new 50-cubit system finally brings something IBM can offer to businesses which face complex challenges that can benefit from quantum’s superposition capabilities.

Still, don’t bet on using quantum computing to solve serious business challenges very soon.  An entire ecosystem of programmers, vendors, programming models, methodologies, useful tools, and a host of other things have to fall into place first. IBM and Google and others are making stunningly rapid progress. Maybe DancingDinosaur will actually be alive to see quantum computing as just another tool in a business’s problem-solving toolkit.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

IBM Moves Quantum Computing Toward Commercial Systems

September 20, 2017

IBM seem determined to advance quantum computing. Just this week IBM announced its researchers developed a new approach to simulate molecules on a quantum computer that may one day help revolutionize chemistry and materials science. In this case, the researchers implemented a novel algorithm that is efficient with respect to the number of quantum operations required for the simulation. This involved a 7-qubit processor.

7-cubit processor

In the diagram above IBM scientists successfully used six qubits on a purpose-built seven-qubit quantum device to address the molecular structure problem for beryllium hydride (BeH2) – the largest molecule simulated on a quantum computer to date.

Back in May IBM announced an even bigger quantum device. It prototyped the first commercial processor with 17 qubits and leverages significant materials, device, and architecture improvements to make it the most powerful quantum processor created to date by IBM. This week’s announcement certainly didn’t surpass it in size. IBM engineered the 17-qubit system to be at least twice as powerful as what is available today to the public on the IBM Cloud and it will be the basis for the first IBM Q early-access commercial systems.

It has become apparent to the scientists and researchers who try to work with complex mathematical problems and simulations that the most powerful conventional commercial computers are not up to the task. Even the z14 with its 10-core CPU and hundreds of additional processors dedicated to I/O cannot do the job.

As IBM puts it: Even today’s most powerful supercomputers cannot exactly simulate the interacting behavior of all the electrons contained in a simple chemical compound such as caffeine. The ability of quantum computers to analyze molecules and chemical reactions could help accelerate research and lead to the creation of novel materials, development of more personalized drugs, or discovery of more efficient and sustainable energy sources.

The interplay of atoms and molecules is responsible for all matter that surrounds us in the world. Now “we have the potential to use quantum computers to boost our knowledge of natural phenomena in the world,” said Dario Gil, vice president of AI research and IBM Q, IBM Research. “Over the next few years, we anticipate IBM Q systems’ capabilities to surpass what today’s conventional computers can do, and start becoming a tool for experts in areas such as chemistry, biology, healthcare and materials science.”

So commercial quantum systems are coming.  Are you ready to bring a quantum system into you data center? Actually you can try one today for free here  or through GitHub, which offers a Python software development kit for writing quantum computing experiments, programs, and applications. Although DancingDinosaur will gladly stumble through conventional coding, quantum computing probably exceeds his frustration level even with a Python development kit.

However, if your organization is involved in these industries—materials science, chemistry, and the like or is wrestling with a problem you cannot do on a conventional computer—it probably is worth a try, especially for free. You can try an easy demo card game that compares quantum computing with conventional computing.

But as reassuringly as IBM makes quantum computing sound, don’t kid yourself; it is very complicated.  Deploying even a small qubit machine is not going to be like buying your first PC. Quantum bits, reportedly, are very fragile or transitory. Labs will keep them very cold just to better stabilize the system and keep them from switching their states before they should.  Just think how you’d feel about your PC if the bit states of 0 and 1 suddenly and inextricably changed.

That’s not the only possible headache. You only have limited time to work on cubits given their current volatility when not super cooled. Also, work still is progressing on advancing the quantum frameworks and mapping out ecosystem enablement.

Even IBM researchers admit that some problems may not be better on quantum computers. Still, until you pass certain threshold, like qubit volume, your workload might not perform better on a quantum computer. The IBM quantum team suggests it will take until 2021 to consistently solve a problem that has commercial relevance using quantum computing.

Until then, and even after, IBM is talking about a hybrid approach in which parts of a problem are solved with a quantum computer and the rest with a conventional system. So don’t plan on replacing your Z with a few dozen or even hundreds of qubits anytime soon.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Introduces First Universal Commercial Quantum Computers

March 9, 2017

A few years ago DancingDinosaur first encountered the possibility of quantum computing. It was presented as a real but distant possibility. This is not something I need to consider I thought at the time.  By the time it is available commercially I will be long retired and probably six feet under. Well, I was wrong.

This week IBM unveiled its IBM Q quantum systems. IBM Q will be leading Watson and blockchain to deliver the most advanced set of services on the IBM Cloud platform. There are organizations using it now, and DancingDinosaur continues to be living and working still.

IBM Quantum Computing scientists Hanhee Paik (left) and Sarah Sheldon (right) examine the hardware inside an open dilution fridge at the IBM Q Lab

As IBM explains: While technologies that currently run on classical (or conventional) computers, such as Watson, can help find patterns and insights buried in vast amounts of existing data, quantum computers will deliver solutions to multi-faceted problems where patterns cannot be seen because the data doesn’t exist and the possibilities that you need to explore are too enormous to ever be processed by conventional computers.

Just don’t retire your z or Power system in favor on an IBM Q yet. As IBM explained at a recent briefing on the quantum computing the IBM Q universal quantum computers will be able to do any type of problem that conventional computers do today. However, many of today’s workloads, like on-line transaction processing, data storage, and web serving will continue to run more efficiently on conventional systems. The most powerful quantum systems of the next decade will be a hybrid of quantum computers with conventional computers to control logic and operations on large amounts of data.

The most immediate use cases will involve molecular dynamics, drug design, and materials. The new quantum machine, for example, will allow the healthcare industry to design more effective drugs faster and at less cost and the chemical industry to develop new and improved materials.

Another familiar use case revolves around optimization in finance and manufacturing. The problem here comes down to computers struggling with optimization involving an exponential number of possibilities. Quantum systems, noted IBM, hold the promise of more accurately finding the most profitable investment portfolio in the financial industry, the most efficient use of resources in manufacturing, and optimal routes for logistics in the transportation and retail industries.

To refresh the basics of quantum computing.  The challenges invariably entail exponential scale. You start with 2 basic ideas; 1) the uncertainty principle, which states that attempting to observe a state in general disturbs it while obtaining only partial information about the state. Or 2) where two systems can exist in an entangled state, causing them to behave in ways that cannot be explained by supposing that each has some state of its own. No more zero or 1 only.

The basic unit of quantum computing is the qubit. Today IBM is making available a 5 qubit system, which is pretty small in the overall scheme of things. Large enough, however, to experiment and test some hypotheses; things start getting interesting at 20 qubits. An inflexion point, IBM researchers noted, occurs around 50 qubits. At 50-100 qubits people can begin to do some serious work.

This past week IBM announced three quantum computing advances: the release of a new API for the IBM Quantum Experience that enables developers and programmers to begin building interfaces between IBM’s existing 5 qubit cloud-based quantum computer and conventional computers, without needing a deep background in quantum physics. You can try the 5 qubit quantum system via IBM’s Quantum Experience on Bluemix here.

IBM also released an upgraded simulator on the IBM Quantum Experience that can model circuits with up to 20 qubits. In the first half of 2017, IBM plans to release a full SDK on the IBM Quantum Experience for users to build simple quantum applications and software programs. Only the publically available 5 qubit quantum system with a web-based graphical user interface now; soon to be upgraded to more qubits.

 IBM Research Frontiers Institute allows participants to explore applications for quantum computing in a consortium dedicated to making IBM’s most ambitious research available to its members.

Finally, the IBM Q Early Access Systems allows the purchase of access to a dedicated quantum system hosted and managed by IBM. Initial system is 15+ qubits, with a fast roadmap promised to 50+ qubits.

“IBM has invested over decades to growing the field of quantum computing and we are committed to expanding access to quantum systems and their powerful capabilities for the science and business communities,” said Arvind Krishna, senior vice president of Hybrid Cloud and director for IBM Research. “We believe that quantum computing promises to be the next major technology that has the potential to drive a new era of innovation across industries.”

Are you ready for quantum computing? Try it today on IBM’s Quantum Experience through Bluemix. Let me know how it works for you.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.


%d bloggers like this: