Posts Tagged ‘software’

Red Hat OpenShift Container Platform on z

February 20, 2020

IBM is finally starting to capitalize on last year’s $34 billion acquisition of Red Hat for z shops. If you had a new z and it ran Linux you would have no problem running Red Hat products so the company line went. Well, in mid February IBM announced Red Hat’s OpenShift Container Platform is now available on the z and LinuxONE, a z with built-in Linux optimized for the underlying z.

OpenShift comes to z and LinuxONE

As the company puts it:  The availability of OpenShift for z and LinuxONE is a major milestone for both hybrid multicloud and enterprise computing. OpenShift, a form of middleware for use with DevOps,  supports cloud-native applications being built once and deployed anywhere, including to on premises enterprise servers, especially the z and LinuxONE. This new release results from the collaboration between IBM and Red Hat development teams, and discussions with early adopter clients.

Working with its Hybrid Cloud, the company has created a roadmap for bringing the ecosystem of enterprise software to the OpenShift platform. IBM Cloud Paks containerize key IBM and open source software components to help enable faster enterprise application development and delivery. In addition to the availability of OpenShift for z it also announced that IBM Cloud Pak for Applications is available for the z and LinuxONE. In effect, it supports the modernization of existing apps and the building of new cloud-native apps. In addition, as announced last August,it is the company’s intention to deliver additional Cloud Paks for the z and LinuxONE.

Red Hat is a leader in hybrid cloud and enterprise Kubernetes, with more than 1,000 customers already using Red Hat OpenShift Container Platform. With the availability of OpenShift for the z and LinuxONE, the agile cloud-native world of containers and Kubernetes, which has become the defacto open global standard for containers and orchestration,  but it is now reinforced by the security features, scalability, and reliability of IBM’s enterprise servers.

“Containers are the next generation of software-defined compute that enterprises will leverage to accelerate their digital transformation initiatives,” says Gary Chen, Research Director at IDC, in a published report.  “IDC estimates that 71% of organizations are in the process of implementing containers and orchestration or are already using them regularly. IDC forecasts that the worldwide container infrastructure software opportunity is growing at a 63.9 % 5-year CAGR and is predicted to reach over $1.5B by 2022.”

By combining the agility and portability of Red Hat OpenShift and IBM Cloud Paks with the security features, scalability, and reliability of z and LinuxONE, enterprises will have the tools to build new cloud-native applications while also modernizing existing applications. Deploying Red Hat OpenShift and IBM Cloud Paks on z and LinuxONE reinforces key strengths and offers additional benefits:

  • Vertical scalability enables existing large monolithic applications to be containerized, and horizontal scalability enables support for large numbers of containers in a single z or LinuxONE enterprise server
  • Protection of data from external attacks and insider threats, with pervasive encryption and tamper-responsive protection of encryption keys
  • Availability of 99.999%  to meet service levels and customer expectations
  • Integration and co-location of cloud-native applications on the same system as the data, ensuring the fastest response times

IBM z/OS Cloud Broker helps enable OpenShift applications to interact with data and applications on IBM Z. IBM z/OS Cloud Broker is the first software product to provide access to z/OS services by the broader development community.

To more easily manage the resulting infrastructure organizations can license the IBM Cloud Infrastructure Center. This is an Infrastructure-as-a-Service offering which provides simplified infrastructure management in support of z/VM-based Linux virtual machines on the z and LinuxONE.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog, and see more of his work at http://technologywriter.com/

IBM Continues Quantum Push

June 8, 2018

IBM continued building out its Q Network ecosystem in May with the announcement of North Carolina State University, which is the first university-based IBM Q Hub in North America. As a hub. NC State will focus on accelerating industry collaborations, learning, skills development, and the implementation of quantum computing.

Scientists inside an open dilution fridge

NC State will work directly with IBM to advance quantum computing and industry collaborations, as part of the IBM Q Network’s growing quantum computing ecosystem. The school is the latest Q Network member. The network consists of individuals and organizations, including scientists, engineers, and business leaders, along with forward thinking companies, academic institutions, and national research labs enabled by IBM Q. Its mission: advancing quantum computing and launching the first commercial applications.

This past Nov. IBM announced a 50 qubit system. Shortly after Google announced Bristlecone, which claims to top that. With Bristlecone Google topped IBM for now with 72 qubits. However, that may not be the most important metric to focus on.

Stability rather than the number of qubits should be the most important metric. The big challenge today revolves around the instability of qubits. To maintain qubit machines stable enough the systems need to keep their processors extremely cold (Kelvin levels of cold) and protect them from external shocks. This is not something you want to build into a laptop or even a desktop. Instability leads to inaccuracy, which defeats the whole purpose.  Even accidental sounds can cause the computer to make mistakes. For minimally acceptable error rates, quantum systems need to have an error rate of less than 0.5 percent for every two qubits. To drop the error rate for any qubit processor, engineers must figure out how software, control electronics, and the processor itself can work alongside one another without causing errors.

50 cubits currently is considered the minimum number for serious business work. IBM’s November announcement, however, was quick to point out that “does not mean quantum computing is ready for common use.” The system IBM developed remains extremely finicky and challenging to use, as are those being built by others. In its 50-qubit system, the quantum state is preserved for 90 microseconds—record length for the industry but still an extremely short period of time.

Nonetheless, 50 qubits have emerged as the minimum number for a (relatively) stable system to perform practical quantum computing. According to IBM, a 50-qubit machine can do things that are extremely difficult to even simulate with the fastest conventional system.

Today, IBM offers the public IBM Q Experience, which provides access to 5- and 16-qubit systems; and the open quantum software development kit, QISKit, maybe the first quantum SDK. To date, more than 80,000 users of the IBM Q Experience, have run more than 4 million experiments and generated more than 65 third-party research articles.

Still, don’t expect to pop a couple of quantum systems into your data center. For the immediate future, the way to access and run qubit systems is through the cloud. IBM has put qubit systems in the cloud, where they are available to participants in its Q Network and Q Experience.

IBM has also put some of its conventional systems, like the Z, in the cloud. This raises some interesting possibilities. If IBM has both quantum and conventional systems in the cloud, can the results of one be accessed or somehow shared with the other. Hmm, DancingDinosaur posed that question to IBM managers earlier this week at a meeting in North Carolina (NC State, are you listening?).

The IBMers acknowledged the possibility although in what form and what timeframe wasn’t even at the point of being discussed. Quantum is a topic DancingDinosaur expects to revisit regularly in the coming months or even years. Stay tuned.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Follow DancingDinosaur on Twitter, @mainframeblog. See more of his work at technologywriter.com and here.

New Oracle SPARC M8 Mimics IBM Z

September 28, 2017

Not even two weeks ago, Oracle announced its eighth-generation SPARC platform, the SPARC M8, as an engineered system and as a cloud service. The new system promises the world’s most advanced processor, breakthrough performance, and security enhancements with Software in Silicon v2 for Oracle Cloud, Oracle Engineered Systems, and Servers. Furthermore, the new SPARC M8 line of servers and engineered systems extend the existing M7 portfolio products, and includes: SPARC T8-1 server, SPARC T8-2 server, SPARC T8-4 server, SPARC M8-8 server and Oracle SuperCluster M8.

Oracle SPARC M7

Pictured above is Oracle SPARC M7, the previous generation SPARC. The new SPARC M8 systems deliver up to 7x better performance, security capabilities, and efficiency than Intel-based systems.  Seems like the remaining active enterprise system vendors, mainly IBM and Oracle, want to present their systems as beating Intel. Both companies, DancingDinosaur suspects, will discover that beating Intel by a few gigahertz or microseconds or nanoseconds won’t generate the desired stream of new customers ready to ditch the slower Intel systems they have used for, by now, decades.  Oracle and IBM will have to deliver something substantially more tangible and distinctive.

For the z14, it should be pervasive encryption, which reduces or eliminates data compliance audit burdens and the corresponding fear of costly data breaches. Don‘t we all wish Equifax had encrypted its data, unless yours somehow are NOT among the 140 million or so compromised records. DancingDinosaur covered the Z launch in July. Not surprisingly, Oracle never mentioned the z14 or IBM in its M8 announcement or data sheet.

What Oracle did say was this: the Oracle SuperCluster M8 engineered systems and SPARC T8 and M8 servers, are designed to seamlessly integrate with existing infrastructures and include fully integrated virtualization and management for private cloud. All existing commercial and custom applications will run on SPARC M8 systems unchanged with new levels of performance, security capabilities, and availability. The SPARC M8 processor with Software in Silicon v2 extends the industry’s first Silicon Secured Memory, which provides always-on hardware-based memory protection for advanced intrusion protection and end-to-end encryption and Data Analytics Accelerators (DAX) with open API’s for breakthrough performance and efficiency running Database analytics and Java streams processing. Oracle Cloud SPARC Dedicated Compute service will also be updated with the SPARC M8 processor.

It almost sounds like a weak parody of IBM’s July z14 announcement here. The following is part of what IBM wrote: Pervasively encrypts data, all the time at any scale. Addresses global data breach epidemic; helps automate compliance for EU General Data Protection Regulation, Federal Reserve, and other emerging regulations. Encrypts data 18x faster than compared x86 platforms, at 5 percent of the cost.

Not sure what DancingDinosaur was expecting Oracle to say. Maybe some recognition that there is another enterprise server out there making similar promises and claims. Certainly it could have benchmarked its own database against the z13 if not the z14. DancingDinosaur may be a mainframe bigot but is no true blue fan of IBM.

What Oracle did say seemed somewhat thin and x86-obsessed:

  • Database: Engineered to run Oracle Database faster than any other microprocessor, SPARC M8 delivers 2x faster OLTP performance per core than x86 and 1.4x faster than M7 microprocessors, as well as up to 7x faster database analytics than x86.
  • Java: SPARC M8 delivers 2x better Java performance than x86 and 1.3x better than M7 microprocessors. DAX v2 produces 8x more efficient Java streams processing, improving overall application performance.
  • In Memory Analytics: Innovative new processor delivers 7x Queries per Minute (QPM)/core than x86 for database analytics.

But one thing Oracle did say appears truly noteworthy for a computer vendor: Oracle’s long history of binary compatibility across processor generations continues with M8, providing an upgrade path for customers when they are ready. Oracle has also publicly committed to supporting Solaris until at least 2034. DancingDinosaur expects to retire in a few years. Hope to not be reading Oracle or IBM press releases then.

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Power System S822LC for HPC Beat Sort Record by 3.3x

November 17, 2016

The new IBM Power System S822LC for High Performance Computing servers set a new benchmark for sorting by taking less than 99 seconds (98.8 seconds) to finish sorting 100 terabytes of data in the Indy GraySort category, improving on last year’s best result, 329 seconds, by a factor of 3.3. The win proved a victory not only for the S822LC but for the entire OpenPOWER community. The team of Tencent, IBM, and Mellanox has been named the Winner of the Sort Benchmark annual global computing competition for 2016.

rack-of-new-ibm-power-systems-s822lc-for-high-performance-computing-servers-1Power System S822LC for HPC

Specifically, the machine, an IBM Power S822LC for High Performance Computing (HPC), features NVIDIA NVLink technology optimized for the Power architecture and NVIDIA’s latest GPU technology. The new system supports emerging computing methods of artificial intelligence, particularly deep learning. The combination, newly dubbed IBM PowerAI, provides a continued path for Watson, IBM’s cognitive solutions platform, to extend its artificial intelligence expertise in the enterprise by using several deep learning methods to train Watson.

Actually Tencent Cloud Data Intelligence (the distributed computing platform of Tencent Cloud) won each category in both the GraySort and MinuteSort benchmarks, establishing four new world records with its performance, outperforming the 2015 best speeds by 2-5x. Said Zeus Jiang, Vice President of Tencent Cloud and General Manager of Tencent’s Data Platform Department: “In the future, the ability to manage big data will be the foundation of successful Internet businesses.”

To get this level of performance Tencent runs 512 IBM OpenPOWER LC servers and Mellanox’100Gb interconnect technology, improving the performance of Tencent Cloud big data products with the infrastructure. Online prices for the S822LC starts at about $9600 for 2-socket, 2U with up to 20 cores (2.9-3.3Ghz), 1 TB memory (32 DIMMs), 230 GB/sec sustained memory bandwidth, 2x SFF (HDD/SSD), 2 TB storage, 5 PCIe slots, 4 CAPI enabled, up to 2 NVidia K80 GPU. Be sure to shop for volume discounts.

The 2016 Sort Benchmark Results below (apologies in advance if this table breaks apart)

Sort Benchmark Competition 20 Records (Tencent Cloud ) 2015 World Records 2016 Improvement
Daytona GraySort 44.8 TB/min 15.9 TB/min 2.8X greater performance
Indy GraySort 60.7 TB/min 18.2 TB/min 3.3X greater performance
Daytona MinuteSort 37 TB/min 7.7 TB/min 4.8X greater performance
Indy MinuteSort 55 TB/min 11 TB/min 5X greater performance

Pretty impressive, huh. As IBM explains it: Tencent Cloud used 512 IBM OpenPOWER servers and Mellanox’100Gb interconnect technology, improving the performance of Tencent Cloud big data products with the infrastructure. Then Tom Rosamilia, IBM Senior VP weighed in: “Industry leaders like Tencent are helping IBM and our OpenPOWER partners push performance boundaries for a cognitive era defined by big data and advanced analytics.” The computing record achieved by Tencent Cloud on OpenPOWER turned out to be an important milestone for the OpenPOWER Foundation too.

Added Amir Prescher, Sr. Vice President, Business Development, at Mellanox Technologies: “Real-time-analytics and big data environments are extremely demanding, and the network is critical in linking together the extra high performance of IBM POWER-based servers and Tencent Cloud’s massive amounts of data,” In effect, Tencent Cloud developed an optimized hardware/software platform to achieve new computing records while demonstrating that Mellanox’s 100Gb/s Ethernet technology can deliver total infrastructure efficiency and improve application performance, which should make it a favorite for big data applications.

Behind all of this was the new IBM Power System S822LC for High Performance Computing servers. Currently the servers feature a new IBM POWER8 chip designed for demanding workloads including artificial intelligence, deep learning and advanced analytics.  However, a new POWER9 chips has already been previewed and is expected next year.  Whatever the S822LC can do running POWER8 just imagine how much more it will do running POWER9, which IBM describes as a premier acceleration platform. DancingDinosaur covered POWER9 in early Sept. here.

To capitalize on the hardware, IBM is making a new deep learning software toolkit available, PowerAI, which runs on the recently announced IBM Power S822LC server built for artificial intelligence that features NVIDIA NVLink interconnect technology optimized for IBM’s Power architecture. The hardware-software combination provides more than 2X performance over comparable servers with 4 GPUs running AlexNet with Caffe. The same 4-GPU Power-based configuration running AlexNet with BVLC Caffe can also outperform 8 M40 GPU-based x86 configurations, making it the world’s fastest commercially available enterprise systems platform on two versions of a key deep learning framework.

Deep learning is a fast growing, machine learning method that extracts information by crunching through millions of pieces of data to detect and ranks the most important aspects of the data. Publicly supported among leading consumer web and mobile application companies, deep learning is quickly being adopted by more traditional enterprises across a wide range of industry sectors; in banking to advance fraud detection through facial recognition; in automotive for self-driving automobiles; and in retail for fully automated call centers with computers that can better understand speech and answer questions. Is your data center ready for deep learning?

DancingDinosaur is Alan Radding, a veteran information technology analyst, writer, and ghost-writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

 

IBM’s Latest Flash Announcements Target Dell/EMC

August 26, 2016

The newest IBM storage, announced here earlier this week, aims to provide small, midsize, and global enterprises with virtualized SDS for primary storage and for cloud or cognitive applications and workloads. Central to the effort is IBM Spectrum Virtualize, which automates Storwize all-flash solutions intended to reduce the cost and complexity of data center and cloud environments. Entry pricing for the new storage starts at $19,000, which IBM describes as cost-conscious.storwize logo

IBM All-Flash for the midrange

In addition, IBM announced Flash In, a no-cost storage migration program targeting Dell/EMC customers that IBM hopes will bail out of the merged operation.

SDS in the form of IBM Spectrum Virtualize is central to making IBM’s latest all-flash offerings work for the broad set of use cases IBM envisions.  As IBM puts it: organizations today are embracing all-flash storage to deliver speed and response times necessary to support growing data workloads across public, private, and hybrid cloud environments, as well as the emerging demands of cognitive applications and workloads.

IBM Spectrum Virtualize promises to improve storage efficiency through features such as real-time data compression, thin provisioning, and snapshotting across nearly 400 different storage arrays from a multitude of vendors. That means organizations can leverage, even repurpose, physical storage capacity they already have as they scramble to meet the storage needs of new workloads.

Spectrum Virtualize also optimizes data security, reliability and operational costs. For example, the software automatically tiers and migrates data from one storage array to another, provides secure data-at-rest encryption, and remotely replicates data for disaster recovery and business continuity

The announcement centers around two products, the enterprise-class IBM Storwize V7000F and a midsize IBM Storwize 5030F,  which promise enterprise-class availability and function in a mid-range and entry-level all-flash storage array.  At the same time, both offer greater performance and require less time to provision and optimize systems. Coincidentally, IBM has just been recognized, for the third year in a row as a leader for Flash Storage in the Gartner Magic Quadrant for Solid-State Arrays (SSA).

Specifically, the all-flash IBM Storwize V7000F improves performance by up to 45 percent and supports four times the clustering for scale-out and scale-up growth to help organizations manage rapidly growing datasets.  The midrange and entry level all flash IBM Storwize 5030F offers high performance and availability at a discounted entry point (noted above) to help clients control costs.

The all-flash Storwize V7000F and Storwize V5030F are also built to manage a variety of primary storage workloads, from database management systems, such as SQL Server and MySQL, to digital media sources that include broadcast, real-time streaming, and video surveillance. The new technology can also handle huge data volumes, such as IoT data.

Given the product line confusion that typically characterizes big technology platform mergers, IBM is looking to entice some Dell or, more likely, EMC storage customers to the new Storwize offerings. To that end, IBM is offering what it describes as a no-cost migration initiative for organizations that are not current IBM customers and seeking a smooth transition path from their EMC or Dell storage to the IBM family of all-flash arrays. BTW: EMC is a leading provider of z System storage.

While too early to spot any Dell or EMC customer response, one long time IBM customer, Royal Caribbean Cruises Ltd, has joined the flash storage party. “With ever increasing volumes of customer and operational information, flexible and secure data storage is crucial to keeping our operation afloat (hope the pun was intended) as our company expands to hundreds of destinations worldwide,” said Leonardo Irastorza, Technology Revitalization & Global Shared Services Manager. The cruise line is counting on IBM flash storage to play a critical role, especially when it comes to ensuring exceptional guest experiences across its brands.

And more is coming: IBM released the following statement of direction: IBM intends to enhance IBM Spectrum Virtualize with additional capabilities for flash drive optimization and management. These capabilities are intended to help increase the service life and usability of flash drives, particularly read-intensive flash drives. The planned capabilities will likely include:

  • Data deduplication for workloads and use cases where it complements IBM’s existing industry leading compression technology
  • Improved flash memory management (mainly for garbage collection)
  • Additional flash drive wear management and reporting.

By implementing these capabilities in IBM Spectrum Virtualize they will be available for IBM Storwize family, FlashSystem V9000, and SAN Volume Controller offerings as well as VersaStack (the IBM/Cisco collaboration) and IBM PurePower systems.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Exploiting the IBM z13 for Maximum Price/Performance Advantage

February 4, 2016

The z13 is the most powerful general purpose computer IBM has ever made. The key to capturing the maximum value from the z13, however, lies in how you plan, design, configure, and optimize your systems and software for everything from COBOL and Java to process parallelization and analytics. What you do in this regard will have significant impact on not only the price/performance you experience but on your success at achieving the business outcomes you are expecting.

z13-under the covers

IBM System z13

This really becomes a software configuration challenge. By tapping approximately 600 internal processors IBM already has optimized the hardware, input, output, memory, and networking/communications about as much as it can be. Your job is to optimize the software you are running, which will require working closely with your ISV.

The place to start is by leveraging the z13’s new compiler technology, parallelism, zIIP and assist processors. This will enable you to save significant money while boosting workload performance. You will literally be doing more for less.

Similarly, in the not too distant past Moore’s Law would virtually guarantee a 15-20% price/performance gain automatically just by taking a new machine out of the box and plugging it in. That’s no longer the case. Now you will have to partner with your ISV to exploit advanced software to maximize the hardware payback and continue the ride along the favorable Moore’s Law price/performance slope.

Then look at the latest COBOL V5.x and its compiler on the z13. Out of the box it is better optimized than previous compilers. In general, the strategic value of COBOL V5.x comes from migrating high CPU usage programs as quickly as possible, effectively saving organizations considerable money by running optimized code.

Some organizations report a 15% on average reduction of CPU time, which adds up to significant savings in monthly CPU charges. How significant? Up to $150k less on a $1 million bill, with some reporting even higher percentage reductions producing even greater savings. Just migrate to COBOL V5.2 (or at least V5.1) to achieve the savings. In general, staying on the software curve with the latest releases of the OS, languages, and compilers with applications optimized for them is the best way to ensure your workloads are achieving top performance in the most cost-effective way.

For example, the new z13 processor leverages a new Vector Facility for certain COBOL statements and expands the use of Decimal Floating Point Facility for packed decimal calculations. Well-structured, compute-intensive batch applications running on z13 and compiled with the Enterprise COBOL V5.2  compiler have shown CPU reduction usage of up to 14% over the same applications running on zEC12 (compiled with the GA release of Enterprise COBOL V5.1), according to IBM. The result: improved workload price/performance.

Enterprise COBOL V5.2 also includes new features to improve programmability, developer productivity, and application modernization. Supporting JSON, for instance, will provide mobile applications easy access to data and the processing they need from business critical production applications written in COBOL.

The z13 and its z sister, the latest LinuxONE dedicated Linux models, were designed and optimized from the start for cloud, mobile, and analytics. They were intended to run alongside traditional mainframe workloads with z/OS or Linux running on the appropriate models.

Finally, plan to take advantage of the new assist processors and expanded memory capacity to further boost performance and lower cost. With the z13, there is a mandatory migration of all zAAP-enabled applications to zIIP. Expect the usage of the zIIP assist processors to surge when all those Java applications move from the zAAP.  ISVs like Compuware should be able to help with this.  In addition, if you enable SMT on the z13, you’ll immediately get more Java capacity.  Applications that run under IBM WebSphere (WAS) on z/OS will benefit too.

The z13 and especially the LinuxONE are breaking new ground. IBM has established, in conjunction with the Linux Foundation, an Open Mainframe Project to support and advance ongoing open source Linux innovation on the mainframe. IBM also is breaking with its traditional mainframe pricing model by offering a pay-per-use option in the form of a fixed monthly payment with costs scaling up or down based on usage. It also offers per-core pricing with software licenses for designated cores. See DancingDinosaur here.

An upcoming DancingDinosaur will look at more of the enhancements being added to these machines, including some of the latest LinuxOne enhancements like support for Google’s Go language and Cloudant’s NoSQL services. The message: the new z System can take you to the places you will want to be in this emerging cloud-mobile-analytics era.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

Making the IBM Mainframe Agile and Swift

December 7, 2015

Do you remember what the mainframe was like when you started on the mainframe career path? Today IBM blurs distinctions between the mainframe and distributed environments through Linux and Java as well as cloud and mobile delivery models.  Heck, you can run Windows natively on x86 cards in a zBX cabinet managed from a console on the z itself. Maybe it’s not the most efficient way to do it and expect better ways coming from IBM, but it is doable now.

seasoft devops imageDevOps in the SDLC, Courtesy Seasoft

More than just interact, the z and distributed environment must productively and seamlessly integrate and interoperate to produce a streamlined development, test, and deployment process. Compounding the challenge: they must do it fast. Organizations can no longer wait for six-month or nine-month release cycles to introduce new capabilities. If capabilities cannot be introduced in just a few weeks max, opportunities and revenue can be lost.  Agile and batch teams have no choice; they must work together.

This calls for data center adoption of DevOps, a combination of development, testing, and operations. Already IBM has instituted DevOps on the z System. The idea of bringing agile and batch together—it almost sounds like an oxymoron or the punchline from a bad computer systems joke—no longer is farfetched. Welcome to the world of hybrid computing where what was once considered disparate and incompatible systems are being brought together, often on the same platform.

The latest generations of the mainframes have been fully hybrid-capable platforms, starting with the z10. They are capable of running mixed workloads concurrently, some of which previously belonged in the distributed platform world only. Today, a mainframe shop with the latest z13 can run traditional z/OS COBOL workloads right alongside Java and Linux workloads. Those with a zBX extension cabinet can even run Windows workloads too under the same unified mainframe management console.

If that sounds a little too kludgy for you, just jump into the cloud. From Bluemix in the cloud you can get to DevOps and find just about everything you need already there, including IBM’s StrongLoop acquisition for API management and microservices.

So now the idea of bringing batch and agile computing together on the mainframe platform doesn’t seem so farfetched.  And it won’t stop there. IBM has been doing its enterprise thing with Apple for about a year. Expect more coming.

That said; an agile mainframe/distributed DevOps environment will become increasingly necessary. How often do you release software? Previously, if an IT organization released new software every year or even every 18 months customers were satisfied. Not anymore.  Today you can’t wait six months before the organization risks falling behind. LOB managers and customers won’t wait. There are too many competitors waiting for any chance to seize an advantage. Slow system refreshes and software updates just play into these competitors’ hands.

DevOps also is essential to the organization’s mobile strategy. Companies in every industry segment are deploying new mobile apps as fast as they can and then almost immediately updating them. For many of these mobile apps the mainframe is the back end, if not the middleware too. Each mobile request for information or to make a purchase or to schedule something triggers numerous back end processes that quickly make their way to the mainframe. It had gotten to the point where IBM had to discount mobile processing on the z or it would hinder mobile growth. DancingDinosaur covered it here.

Helping to drive mobile on the z, of course, is IBM’s relationship with Apple. Over the past year the two companies have been bringing out combined enterprise-mobile applications. Now Apple just announced that it is making its popular programming language, Swift, open source. It shouldn’t take much to get it onto Bluemix. Back in Sept. 2014  IBM announced it already had a preliminary version working through Bluemix.

Although Swift is known mainly for mobile client development, today it is described as combining the performance and efficiency of compiled languages with the simplicity and interactivity of popular scripting languages.  Apple’s Swift strategy seems coming right out of IBM’s recent playbook of embracing open source communities. You can get started at the Swift website, here.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM Makes a Big Play for the API Economy with StrongLoop

September 25, 2015

APIs have become essential in connecting systems of engagement with the systems of record typically found on the IBM z System. That’s one reason why IBM earlier this month acquired StrongLoop, Inc., a software provider that helps developers connect enterprise applications to mobile, Internet of Things (IoT) and web applications in the cloud mainly through rapidly proliferating and changing APIs.  Take this as a key signal IBM intends to be a force in the emerging API economy. Its goal is to connect existing enterprise apps, data, and SOA services to new channels via APIs.

api economy ibm

Courtesy: developer.IBM.com (click to enlarge)

Key to the acquisition is StrongLoop’s position as a leading provider of Node.js, a scripting language that has become a favorite among developers needing to build applications using APIs. According to IBM it intends to integrate Node.js capabilities from StrongLoop with its own software portfolio, which already includes MobileFirst and WebSphere, to help organization better use enterprise data and conduct transactions whether in the cloud or on-premises.

These new capabilities, IBM continues, will enable organizations and developers to build scalable APIs, and more easily connect existing back-end enterprise processes with front-end mobile, IoT, and web apps in an open hybrid cloud. Node.js is one of the fastest growing development frameworks for creating and delivering APIs in part due to it similarities with JavaScript. This shortens the learning curve.

Although Node.js is emerging as the standard for APIs and micro-services, APIs still present challenges. These include the lack of an architected approach, limited scalability, multiple languages and point products, limited data connectors, and large, fragile monolithic applications.

Mainframe data centers, in particular, are sitting on proven software assets that beg to be broken out as micro-services to be combined and recombined to create new apps for use in mobile and Web contexts. As IoT ramps up the demand for these APIs and more will skyrocket.  And the mainframe data center will sit at the center of all this, possibly even becoming a revenue generator.

In response, StrongLoop brings API creation and lifecycle support and back end data connectors. It also will integrate with IBM’s API management, creating an API Platform that can enable polyglot run-times, integration, and API performance monitoring. It also will integrate with IBM’s MobileFirst Platform, WebSphere and other products, such as Bluemix, to enable Node across the product portfolio. StrongLoop also brings Arc and its LoopBack framework, which handles everything from API visual modeling to process manager to scale APIs, and a security gateway. Together StrongLoop Arc along with IBM’s API Management can deliver the full API lifecycle. IBM also will incorporate select capabilities from StrongLoop into its IoT Foundation, a topic DancingDinosaur expects to take up in the future.

At the initial StrongLoop acquisition announcement Marie Wieck, general manager, Middleware, IBM Systems, alluded to the data center possibilities, as noted above: “Enterprises are focused on digital transformation to reach new channels, tap new business models, and personalize their engagement with clients. APIs are a critical ingredient.” The fast adoption of Node.js for rapidly creating APIs combined with IBM’s strength in Java and API management on the IBM cloud platform promises a winning strategy.

To make this even more accessible, IBM is adding Node.js to Bluemix, following a summer of enhancements to Bluemix covered here by DancingDinosaur just a few weeks ago. Java remains the leading language for web applications and transaction systems. Combining StrongLoop’s Node.js tools and services with IBM’s WebSphere and Java capabilities will help organizations bridge Java and Node.js development platforms, enabling enterprises to extract greater value from their application investments. Throw in integration on IBM Bluemix and the Java and Node.js communities will gain access to many other IBM and third-party services including access to mobile services, data analytics, and Watson, IBM’s crown cognitive computing jewel.

DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM Expands Spectrum Storage in the Cloud with Spectrum Protect

September 18, 2015

IBM is targeting storage for hybrid clouds with Spectrum Protect. Specifically, it brings new cloud backup and a new management dashboard aimed to help businesses back up data to on-premises object storage or the cloud without the expense of cloud-gateway appliances. It also enables advanced data placement across all storage types to maximize performance, availability, and cost efficiency. Spectrum Protect represents the latest part of the IBM Spectrum storage family; which provides advanced software defined storage (SDS) storage capabilities and flexible storage either as software, an appliance, or a cloud service.  IBM announced Spectrum Protect at the end of August.

ibm Spectrum Protect Dashboard dino

Courtesy IBM: Spectrum Protect dashboard (click to enlarge)

Introduced early this year, IBM Spectrum brings a family of optimized SDS solutions designed to work together. It offers SDS file, object, and block storage with common management and a consistent user and administrator experience.  Although it is based on IBM’s existing storage hardware products like XIV, Storwize, IBM FlashSystem, and SVC you can deploy it as software on some non IBM hardware too. It also offers support for VMware environments and includes VMware API support for VASA, VAAI, and VMware SRM. With Spectrum, IBM appears to have come up with a winner; over the last six months, IBM reports more than 1,000 new clients have chosen products from the IBM Spectrum Storage portfolio.

Specifically, IBM Spectrum Protect supports IBM Cloud infrastructure today with plans to expand to other public clouds in future. IBM Spectrum Accelerate (XIV block storage) also can be accessed as a service by IBM Cloud customers via the SoftLayer cloud infrastructure. There it allows companies to deploy block storage on SoftLayer without having to buy new storage hardware or manage appliance farm.

In competitive analysis, IBM found that a single IBM Spectrum Protect server performs the work of up to 15 CommVault servers. This means that large enterprises can consolidate backup servers to reduce cost and complexity while managing data growth from mobile, social, and Internet of Things environments.  Furthermore, SMBs can eliminate the need for a slew of infrastructure devices, including additional backup servers, media servers, and deduplication appliances, thereby reducing complexity and cost. Cost analysis with several beta customers, reports IBM, indicates that the enhanced IBM Spectrum Protect software can help clients reduce backup infrastructure costs on average by up to 53 percent.

IBM reports that the Spectrum Storage portfolio can centrally manage more than 300 different storage devices and yottabytes (yotta=1024 bytes) of data.  Its device interoperability is the broadest in the industry – incorporating both IBM and non-IBM hardware and tape systems.  IBM Spectrum Storage can help reduce storage costs up to 90 percent in certain environments by automatically moving data onto the most economical storage device – either from IBM or non-IBM flash, disk, and tape systems.

IBM Spectrum Storage portfolio packages key storage software from conventional IBM storage products. These include IBM Spectrum Accelerate (IBM XIV), Spectrum Virtualize (IBM SAN Volume Controller along with IBM Storwize), Spectrum Scale (IBM General Parallel File System or GPFS technology, previously referred to as Elastic Storage), Spectrum Control (IBM Virtual Storage Center and IBM Storage Insights), Spectrum Protect (Tivoli Storage Manager family) and Spectrum Archive (various IBM tape backup products).

The portfolio is presented as a software-only product and, presumably, you can run it on IBM and some non-IBM storage hardware if you chose. You will have to compare the cost of the software license with the cost of the IBM and non-IBM hardware to decide which gets you the best deal.  It may turn out that running Spectrum Accelerate (XIV) on low cost, generic disks rather than buying a rack of XIV disk to go with it may be the lowest price. But keep in mind that the lowest cost generic disk may not meet your performance or reliability specifications.

IBM reports it also is enhancing the software-only version of IBM Spectrum Accelerate to reduce costs by consolidating storage and compute resources on the same servers. In effect, IBM is making XIV software available with portable licensing across XIV systems, on- premises servers, and cloud environments to offer greater operational flexibility. Bottom line: Possibly a good deal but be prepared to do some detailed comparative cost analysis to identify the best mix of SDS, cloud storage, and hardware at the best price for your particular needs.

In general, however, DancingDinosaur favors almost anything that increases data center configuration and pricing flexibility. With that in mind consider the IBM Spectrum options the next time you plan storage changes. (BTW, DancingDinosaur also does storage and server cost assessments should you want help.)

DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

 

API Economy Comes to the IBM z System

June 11, 2015

What comes to mind when you hear (or read) about a RESTful IBM z System? Hint: it is not a mainframe that is loafing. To the contrary, a RESTful mainframe probably is busier than it has ever been, now running a slew of new apps, most likely mobile or social apps with REST APIs connecting to z/OS-based web services plus its usual workloads. Remember web services when SOA first came to the mainframe? They continue today behind the new mobile, cloud, social, and analytical workloads that are putting the spotlight on the mainframe.

Travel and Transportation - Passenger Care

Courtesy of IBM: travel fuels mobile activity (click to enlarge)

A variety of Edge2015 sessions, given by Asit Dan, chief architect, z Service API Management and Glenn Anderson, IBM Lab Services and Training, put what the industry refers to as the emerging API economy in perspective. The z, it should come as no surprise, lies at the heart of this burgeoning API economy, not only handling transactions but also providing governance and management to the API phenomenon that is exploding. Check out IBM’s APIs for Dummies.

The difference between first generation SOA and today’s API economy lies in the new workloads—especially mobile and cloud—fueling the surging interest. The mobile device certainly is the fastest growing platform and will likely become the largest platform soon if it is not already, surpassing desktop and laptop systems.

SOA efforts initially focused on the capabilities of the providers of services, noted Dan, particularly the development, run-time invocation, and management of services. The API economy, on the other hand, focuses on the consumption of these services. It really aims to facilitate the efforts of application developers (internal developers and external business partners) who must code their apps for access to existing and new API-enabled services.

One goal of an enterprise API effort is to access already deployed services, such z-based CICS services or those of a partner. Maybe a more important goal, especially where the z is involved, is to drive use of mainframe software assets by customers, particularly mobile customers.  The API effort not only improves customer service and satisfaction but could also drive added revenue. (Have you ever fantasized of the z as a direct revenue generator?)

This calls, however, for a new set of interfaces. As Dan notes in a recent piece, APIs for accessing these assets, defined using well known standards such as web services and Representational State Transfer (REST) with JSON (JavaScript Object Notation), and published via an easily accessible catalog, make it efficient to subscribe to APIs for obtaining permissions and building new applications. Access to the APIs now can be controlled and tracked during run-time invocations (and even metered where revenue generation is the goal).

Now the API economy can morph into a commercial exchange of business functions, capabilities, and competencies as services using web APIs, noted Glenn Anderson at Edge2015. In-house business functions running on the z can evolve into an API as-a-service delivery vehicle, which amounts to another revenue stream for the mainframe data center.

The API economy often is associated with the concept of containers. Container technology provides a simplified way to make applications more mobile in a hybrid cloud, Anderson explained, and brings some distinct advantages. Specifically, containers are much smaller in size than virtual machines and provide more freedom in the placement of workloads in a cloud (private, public, hybrid) environment. Container technology is being integrated into OpenStack, which is supported on the z through IBM Cloud Manager. Docker is the best known container technology and it works with Linux on z.

With the combination of SOA, web services, REST, JSON, OpenStack, and Docker all z capable, a mainframe data center can fully participate in the mobile, apps, cloud API economy. BTW, POWER servers also can play the API, OpenStack, Docker game too. Even Watson can participate in the API economy through IBM’s early March acquisition of AlchemyAPI, a provider of scalable cognitive computing API services. The acquisition will drive the API economy into cognitive computing too. Welcome to the mainframe API economy.

DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing on Technologywriter.com and here.


%d bloggers like this: