Posts Tagged ‘Power Systems’

Spectrum Suite Returns IBM to the Storage Game

January 29, 2016

The past four quarters haven’t been kind to IBM storage as the storage group racked up consecutive quarterly revenue losses. The Spectrum Suite V 1.0 is IBM’s latest software defined storage (SDS) initiative, one of the hottest trends in storage. The product release promises to start turning things around for IBM storage.

IBM Mobile Storage (Jared Lazarus/Feature Photo Service for IBM)

IBM Mobile Storage, Jamie,Thomas, GM Storage (Jared Lazarus/Feature Photo Service for IBM)

Driving interest in SDS is the continuing rapid adoption on new workload, new application, and new ways of storing and consuming data. The best thing about the Spectrum Suite is the way IBM is now delivering it—as a broad set of storage software capabilities that touch every type of storage operation. It doesn’t much matter which workloads or applications are driving it or what kind of storage you need.  Seventy percent of clients report deploying object storage, and 60% already are committed to SDS.  Over three-quarters of storage device interface (SDI) adopters also indicated a strong preference for single-vendor storage solutions.  This all bodes well for IBM’s Spectrum Suite.

Also working in IBM’s favor is the way storage has traditionally been delivered. Even within one enterprise there can be multiple point solutions from different vendors or even incompatible solutions from the same vendor. Companies need to transition among storage software offerings as business needs change, which entails adding and removing software licenses. This always is complex and may even lead to dramatic cost gyrations due to different licensing metrics and different vendor policies.  On top of that, procurement may not play along so quickly, leaving the organization with a gap in functionality.  Then there are the typical inconsistent user interfaces among offerings, which invariably reduces productivity and may increase errors.

Add to that the usual hassles of learning different products with different interfaces and different ways to run new storage processes. As a result, a switch to SDS may not be as smooth or efficient as you hoped, and it probably won’t be cheap.

IBM is counting on these storage complications, outlined above, and more to give it a distinct advantage in the SDS market  IBM should know; the company has been one of the offenders creating similar complications as they cobbled together a wide array of storage products with different interfaces and management processes over the years.

With the new Spectrum Storage Suite IBM finally appears to have gotten it right. IBM is offering a simplified and predictable licensing model for entire Spectrum Storage family. Pricing is pegged to the capacity being used, regardless of what that capacity is and how it is being used. Block, file, object—doesn’t matter; the same per-terabyte pricing applies. IBM estimates that alone can save up to 40% compared to licensing different software capabilities separately. Similarly, there are no software licensing hassles when migrating from one form of storage or data type to another. Even the cost won’t change unless you add capacity. Then, you pay the same per-terabyte cost for the additional capacity.

The Spectrum Suite and its licensing model work for mainframe shops running Linux on z and LinuxONE. Sorry, no z/OS yet.

The new Spectrum Storage approach has advantages when running a storage shop. There are no unexpected charges when using new capabilities and IBM isn’t charging for non-production uses like dev and test.

Finally, you will find a consistent user interface across all storage components in the Spectrum suite. That was never the case with IBM’s underlying storage hardware products but Spectrum SDS makes those difference irrelevant. The underlying hardware array doesn’t really matter; admins will rarely ever have to touch it.

The storage capabilities included in IBM Spectrum Storage Suite V1.0 should be very familiar to you from the traditional IBM storage products you probably are currently using. They include:

  • IBM Spectrum Accelerate, Version 11.5.3
  • IBM Spectrum Archive Enterprise Edition, Version 1.2 (Linux edition)
  • IBM Spectrum Control Advanced Edition 5.2
  • IBM Spectrum Protect Suite 7.1
  • IBM Spectrum Scale Advanced and Standard Editions (Protocols) V4.2
  • IBM Spectrum Virtualize Software for SAN Volume Controller, Version 7.6
  • IBM Spectrum Virtualize Software for SAN Volume Controller, Version 7.6 – Real-time Compression
  • IBM Spectrum Virtualize Software for SAN Volume Controller, Version 7.6 – Encryption Software

With Spectrum Storage you can, for example, run SAN storage, storage rich servers, and a tape library. Add up the storage capacity for each and pay the per-terabyte licensing cost. Re-allocate the existing capacity between the different types of storage and your charges don’t change. Pretty nifty, huh? To DancingDinosaur, who has sat through painful discussions of complicated IBM software pricing slopes, this is how you spell relief. Maybe there really is a new IBM coming that actually gets it.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM zSystem Continues Surge in 4Q15

January 22, 2016

DancingDinosaur follows technology, not financial investments, so you’d be an idiot if you considered what follows as investment advice. It is not.  Still, as one who has built a chunk of his career around the mainframe, it is good to see the z System continuing to remain in the black and beating the sexier Power lineup although I do follow both closely. See the latest IBM financials here.

  ibm-z13

The IBM z13 System

 Specifically, as IBM reported on Tuesday, revenues from z Systems mainframe server products increased 16 percent compared with the year-ago period (up 21 percent adjusting for currency).  Total delivery of z Systems computing power, as measured in MIPS (millions of instructions per second), increased 28 percent.  Revenues from Power Systems were up 4 percent compared with the 2014 period (up 8 percent adjusting for currency).

Almost as good, revenues from Power Systems were up 4 percent compared with the 2014 period (up 8 percent adjusting for currency). Power revenues have been up most of the year although they got a little blurry in the accounting.

In the storage market, which is getting battered by software defined storage (SDS) on one hand and cloud-based storage on the other, IBM reported revenues from System Storage decreased 11 percent (down 7 percent adjusting for currency). The storage revenues probably won’t bounce back fast, at least not without IBM bringing out radically new storage products. That storage rival EMC got acquired by Dell should be some kind of signal that the storage market as the traditional enterprise players knew it is drastically different. For now object storage, SDS, and even Flash won’t replace the kind of revenue IBM used to see from DS8000 disk systems or TS enterprise tape libraries loaded with mechanical robotics.

Getting more prominence is IBM’s strategic initiative. This has been a company priority all year. Strategic initiatives include cloud, mobile, analytics, security, IoT, and cognitive computing. Q4 revenues, as reported by IBM, from these strategic imperatives — cloud, analytics, and engagement — increased 10 percent year-to-year (up 16 percent adjusting for currency).  For the full year, revenues from strategic imperatives increased 17 percent (up 26 percent adjusting for currency and the divested System x business) to $28.9 billion and now represents 35 percent of total IBM consolidated revenue.

For the full year, total cloud revenues (public, private and hybrid) increased 43 percent (up 57 percent adjusting for currency and the divested System x business) to $10.2 billion.  Revenues for cloud delivered as a service — a subset of the total cloud revenue — increased 50 percent to $4.5 billion; and the annual as-a-service run rate increased to $5.3 billion from $3.5 billion in the fourth quarter of 2014.

Meanwhile, revenues from business analytics increased 7 percent (up 16 percent adjusting for currency) to $17.9 billion.  Revenues from mobile more than tripled and from security increased 5 percent (up 12 percent adjusting for currency).

Commenting on IBM latest financial was Timothy Prickett Morgan, who frequently writes on IBM’s platforms. Citing Martin Schroeter, IBM’s chief financial officer, statements to analyst, Morgan suggested that low profit margins, which other financial analysts complained about, put pressure on the System z13 product line that launched early in the year. After a fast start, apparently, the z13 is now experiencing a slowdown in the upgrade cycle. It’s at this point that DancingDinosaur usually expects to see a new z, typically a business class version of the latest mainframe, the z13 in this case, but that does not appear to be in the offing. About the closest IBM got to that was the RockHopper model of the LinuxOne, a z optimized only for Linux, cloud, mobile, and analytics.

Morgan also noted that IBM added about 50 new mainframe customers for the year on an installed base of about 6,000 active customers. DancingDinosaur has been tracking that figure for years and it has not fluctuated much in recent years. And am never sure how to count the handful of IT shops that run a z in the IBM cloud.  But 5000-6000 active z shops still sounds about right.

Power Systems, which has also grown four quarters in a row, and was up 8 percent at constant currency. This has to be a relief to the company, which has committed over $1 billion to Power. IBM attributes some of this growth to its enthusiastic embrace of Linux on Power8, but Morgan complains of having no sense of how much of the Power Systems pie is driven by scale-out Linux machines intended to compete against Intel Xeon servers. Power also is starting to get some boost from the OpenPOWER Foundation, members that started to ship products in the past few months. It’s probably minimal revenue now but over time it should grow.

For those of us who are counting on z and Power to be around for a while longer, the latest financials should be encouraging.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Mobile Financial App Security Appears Shaky

January 15, 2016

IBM has made mobile a key strategic imperative going forward, even discounting mobile software license charges on z. However, a recent study suggests that mobile apps may be less secure than app users think. For example, 83% of the app users surveyed felt their applications were adequately secure. Yet, 90% of the applications Arxan Technologies tested were vulnerable to at least two of the Open Web Application Security Project (OWASP) Mobile Top 10 Risks.

dino Arxan_SOAS_Title_Image

The OWASP Top Ten is an awareness document for web application security. The OWASP Top Ten represents a broad consensus about what the most critical web application security flaws are. Security experts will use the list as a first step in changing the security awareness and software development culture around security in organizations around the world. You can find the Arxan report here.

In the latest study, 41% of mobile finance app users expect their finance apps to be hacked within the next six months. That’s not exactly a vote of confidence. Even worse, 42% of executive IT decision makers, those who have oversight or insight into the security of the mobile finance apps they produce, feel the same way.  Does this bother you?

It should. The researchers found that 81% of app users would change providers if apps offered by similar providers were more secure. While millennials are driving the adoption of mobile apps, their views on the importance of app security were equally as strong as the older non-millennials. Overall, survey results showed very little geographical discrepancies across the US, UK, Germany, and Japan.

This sentiment makes it sound like mobile finance applications are at a hopeless state of security where, despite Herculean efforts to thwart attackers, adversaries are expected to prevail. But the situation is not hopeless; it’s careless. Half the organizations aren’t even trying. Fully 50% of organizations have zero budget allocated for mobile app security—0, nothing, nada—according to the researchers.  By failing to step up their mobile security game organizations risk losing customers to competitors who offer alternative apps that are more secure.

How bad is the mobile security situation? When put to the test, the majority of mobile apps failed critical security tests and could easily be hacked, according to the researchers.  Among 55 popular mobile finance apps tested for security vulnerabilities, 92% were shown to have at least two OWASP Mobile Top 10 Risks. Such vulnerabilities could allow the apps to be tampered and reverse-engineered, which could clearly put sensitive financial information in the wrong hands or, even worse, potentially redirect the flow of money. Ouch!

Think about all the banks and insurance companies that are scrambling to deploy new mobile apps. As it turns out, financial services organizations, the researchers report, also are among the top targets of hackers seeking high-value payment data, intellectual property (IP), and other sensitive information. Specifically, employee, customer, and soft IP data are the top three targets of cyber-attacks in the financial services market; while at the same time theft of hard IP soared 183% in 2015, according to PwC, another firm researching the segment.

With the vast majority of cyber-attacks happening at the application layer, one would think that robust application security would be a fundamental security measure being aggressively implemented and increasingly required by regulators, particularly given the financial services industry’s rapid embrace of mobile financial apps. But apparently it is not.

So where does the financial mobile app industry stand? Among the most prevalent OWASP Mobile Top 10 Risks identified among the mobile finance apps tested the top 2 risks were:

1) Lack of binary protection (98%) – this was the most prevalent vulnerability

2) Insufficient transport layer protection (91%).

A distant third, at 58%, was unintended data leakage. All these vulnerabilities, the top two especially, make the mobile financial applications susceptible to reverse-engineering and tampering in addition to privacy violations and identity theft.

Says Arxan CTO Sam Rehman: “The impact for financial institutions and mobile finance app users can be devastating. Imagine having your mobile finance app leak your personal financial information and identity, or your app maliciously redirecting your money.” The customer outrage and bad press that followed wouldn’t be pretty, not to mention the costly lawsuits.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM Systems Sets 2016 Priorities

December 14, 2015

Despite its corporate struggles, IBM Systems, the organization that replaced IBM System and Technology Group (IBM STG) had a pretty good year in 2015. It started the year by launching the z13, which was optimized for the cloud and mobile economy. No surprise there. IBM made no secret that cloud, mobile, and analytics were its big priorities.  Over the year it also added cognitive computing and software defined storage to its priorities.

But it might have left out its biggest achievement of 2015.  This week IBM announced receiving a major multi-year research grant to IBM scientists to advance the building blocks for a universal quantum computer. The award was made by the U.S. Intelligence Advanced Research Projects Activity (IARPA) program. This may not come to commercial fruition in our working lives but it has the potential to radically change computing as we have ever envisioned it. And it certainly will put a different spin on worries about Moore’s Law.

Three Types of Quantum Computing

Right now, according to IBM, the workhorse of the quantum computer is the quantum bit (qubit). Many scientists are tackling the challenge of building qubits, but quantum information is extremely fragile and requires special techniques to preserve the quantum state. This fragility of qubits played a key part in one of the preposterous but exciting plots on the TV show Scorpion. The major hurdles include creating qubits of high quality and packaging them together in a scalable form so they can perform complex calculations in a controllable way – limiting the errors that can result from heat and electromagnetic radiation.

IBM scientists made a great stride in that direction earlier this year by demonstrating critical breakthroughs to detect quantum errors by combining superconducting qubits in lattices on computer chips – and whose quantum circuit design is the only physical architecture that can scale to larger dimensions.

To return to a more mundane subject, revenue, during 2015 DancingDinosaur reported the positive contributions the z System made to IBM’s revenue, one of the company’s few positive revenue performers. Turned out DancingDinosaur missed one contributor since it doesn’t track constant currency. If you look at constant currency, which smooths out fluctuations in currency valuations, IBM Power Systems have been on an upswing for the last 3 quarters: up 1% in Q1, up 5% in Q2, up 2% in Q3.   DancingDinosaur expects both z and Power to contribute to IBM revenue in upcoming quarters.

Looking ahead to 2016, IBM identified the following priorities:

  • Develop an API ecosystem that monetizes big data and cognitive workloads, built on the cloud as part of becoming a better service provider.
  • Win the architectural battle with OpenPOWER and POWER8 – designed for data and the cognitive era. (Unspoken, beat x86.)
  • Extend z Systems for new mobile, cloud and in-line analytics workloads.
  • Capture new developers, markets and buyers with open innovation on IBM LinuxONE, the most advanced and trusted enterprise Linux system.
  • Shift the IBM storage portfolio to a Flash and the software defined model that disrupts the industry by enabling new workloads, very high speed, and data virtualization for improved data economics.
  • Engage clients through a digital-first Go-to-Market model

These are all well and good. About the only thing missing is any mention of the IBM Open Mainframe Project that was announced in August as a partnership with the Linux Foundation. Still hoping that will generate the kind of results in terms of innovative products for the z that the OpenPOWER initiative has started to produce. DancingDinosaur covered that announcement here. Hope they haven’t given up already.  Just have to remind myself to be patient; it took about a year to start getting tangible results from OpenPOWER consortium.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

Expect this to be the final DancingDinosaur for 2015.  Be back the week of Jan. 4

Latest IBM Initiatives Drive Power Advantages over x86

November 20, 2015

This past week IBM announced a multi-year strategic collaboration between it and Xilinx that aims to enable higher performance and energy-efficient data center applications through Xilinx FPGA-enabled workload acceleration on IBM POWER-based systems. The goal is to deliver open acceleration infrastructures, software, and middleware to address applications like machine learning, network functions virtualization (NFV), genomics, high performance computing (HPC), and big data analytics. In the process, IBM hopes to put x86 systems at an even greater price/performance disadvantage.

CAPI-640x419

Courtesy of IBM

At the same time IBM and several fellow OpenPOWER Foundation members revealed new technologies, collaborations and developer resources to enable clients to analyze data more deeply and at high speed. The new offerings center on the tight integration of IBM’s open and licensable POWER processors with accelerators and dedicated high performance x86e processors optimized for computationally intensive software code. The accelerated POWER-based offerings come at a time when many companies are seeking the best platform for Internet of Things, machine learning, and other performance hungry applications.

The combination of collaborations and alliances are clearly aimed at establishing Power as the high performance leader for the new generation of workloads. Noted IBM, independent software vendors already are leveraging IBM Flash Storage attached to CAPI to create very large memory spaces for in-memory processing of analytics, enabling the same query workloads to run with a fraction of the number of servers compared to commodity x86 solutions.  These breakthroughs enable POWER8-based systems to continue where the promise of Moore’s Law falls short, by delivering performance gains through OpenPOWER ecosystem-driven, full stack innovation. DancingDinosaur covered efforts to expand Moore’s Law on the z a few weeks back here.

The new workloads present different performance challenges. To begin, we’re talking about heterogeneous workloads that are becoming increasingly prevalent, forcing data centers to turn to application accelerators just to keep up with the demands for throughput and latency at low power. The Xilinx All Programmable FPGAs promise to deliver the power efficiency that makes accelerators practical to deploy throughout the data center. Just combine IBM’s open and licensable POWER architecture with Xilinx FPGAs to deliver compelling performance, performance/watt, and lower total cost of ownership for this new generation of data centers workloads.

As part of the IBM and Xilinx strategic collaboration, IBM Systems Group developers will create solution stacks for POWER-based servers, storage, and middleware systems with Xilinx FPGA accelerators for data center architectures such as OpenStack, Docker, and Spark. IBM will also develop and qualify Xilinx accelerator boards for IBM Power Systems servers. Xilinx is developing and will release POWER-based versions of its leading software defined SDAccel™ Development Environment and libraries for the OpenPOWER developer community.

But there is more than this one deal. IBM is promising new products, collaborations and further investments in accelerator-based solutions on top of the POWER processor architecture.  Most recently announced were:

The coupling of NVIDIA® Tesla® K80 GPUs, the flagship offering of the NVIDIA Tesla Accelerated Computing Platform, with Watson’s POWER-based architecture to accelerate Watson’s Retrieve and Rank API capabilities to 1.7x of its normal speed. This speed-up can further improve the cost-performance of Watson’s cloud-based services.

On the networking front Mellanox announced the world’s first smart network switch, the Switch-IB 2, capable of delivering an estimated 10x system performance improvement. NEC also announced availability of its ExpEther Technology suited for POWER architecture-based systems, along with plans to leverage IBM’s CAPI technology to deliver additional accelerated computing value in 2016.

Finally, two OpenPOWER members, E4 Computer Engineering and Penguin Computing, revealed new systems based on the OpenPOWER design concept and incorporating IBM POWER8 and NVIDIA Tesla GPU accelerators. IBM also reported having ported a series of key IBM Internet of Things, Spark, Big Data, and Cognitive applications to take advantage of the POWER architecture with accelerators.

The announcements include the names of partners and products but product details were in short supply as were cost and specific performance details. DancingDinosaur will continue to chase those down.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

DancingDinosaur will not post the week of Thanksgiving. Have a delicious holiday.

IBM Enhances the DS8000 Storage Family for New Challenges

October 30, 2015

Earlier this month IBM introduced a family of business-critical hybrid data storage systems that span a wide range of price points. The family is powered by the next generation of IBM’s proven DS8000 storage platform and delivers critical application acceleration, 6-nines (99.9999) availability, and industry-leading capabilities, like integrated high performance flash.  And coming along in November and December will be new tape storage products.

IBM-DS8880.jpg.

DS8880, courtesy of IBM (click to enlarge)

The company sees demand for the new storage being driven by cloud, mobile, analytics, and security. As IBM continues to encourage data centers to expand into new workloads, it is introducing a new family of business-critical hybrid flash data systems primarily to support the latest requirements of z System- and Power-based data centers. If your shop hasn’t started to experience a ramp up of new workloads it likely will soon enough.

The new storage family, all based on POWER8 and the DS8000 software stack, currently consists 3 models:

  1. The entry model, the DS8884, delivers fast hybrid flash starting at under $50K. It offers up to 12 cores, 256 GB total system memory, 64 16GB FCP/FICON ports, and 768 HDD/SSD + 120 Flash cards in a 19”, 40u rack.
  2. The DS8886 brings a 2x performance boost, up to 48 cores, 2 TB total system memory, 128 16GB FCP/FICON ports, and 1536 HDD/SSD’s + 240 Flash cards packed into a 19”, 46u rack.
  3. The high end DS8888, according to IBM, is the industry’s fastest T1 Subsystem. It offers all-flash with up to 96 cores, 2 TB total system memory, 128 16GB FCP/FICON ports, and 480 Flash cards packed in the 19”, 40u rack. Won’t be available until spring 2016.

Being built on the DS8000 software stack, the new storage brings unparalleled integration with IBM z System. The systems are especially tuned for insight and cloud environments. They also deliver top efficiency and maximum utilization of resources including staff productivity, space utilization and lower cost through streamlined operations and a 30% reduction in footprint vs. 33″-34” racks.

The DS8888 family comes with two license options: Base function license provides Logical Configuration support for FB, Original Equipment License (OEL), IBM Database Protection, Thin Provisioning, Encryption Authorization, Easy Tier, and I/O Priority Manager. The z Synergy Service  Function license brings PAV, and Hyper-PAV, FICON and High Performance FICON (zHPF), IBM z/OS Distributed Data Backup, and a range of Copy Services Functions including FlashCopy, Metro Mirror, Global MirrorMetro/Global Mirror, z/Global Mirror & z/Global Mirror Resync, and Multi-Target PPRC .

The DS8880 family also provides 99.9999% uptime, an increase over the typical industry uptime benchmark of 99.999% uptime. That extra decimal point translates into 365.243 continuous days of uptime per year. Even the most mission-critical application can probably live with that.

The High-Performance Flash Enclosure for the DS8880 family redefines what IBM considers true enterprise hybrid flash data systems should be, especially in terms of performance for critical applications. Usually, hybrid systems combine flash and traditional spinning drives to be deployed among a variety of mixed workloads of private or public clouds, while reserving more costly all-flash storage for delivering the most extreme performance for only those applications that require it. Now IBM recommends hybrid configurations for consolidation of virtually all workloads since the DS8880 preserves the flexibility to deliver flash performance exactly where and when it is needed automatically through Easy Tier, which optimizes application performance dynamically across any DS8880 configuration without requiring administrators to manually tune and retune applications and storage.

The DS8880 also supports a wide variety of enterprise server and virtual server platforms, but not all are created equal. It includes special integration with z Systems and IBM Power Systems. This is due to the advanced microcode that has been developed and enhanced in lockstep with the mainframe’s I/O architecture over the past several decades. For Power shops the DS8880 copy services are tightly integrated with IBM PowerHA SystemMirror for AIX and IBM i, which add another level of assurance for users who need 24×7 business continuity for their critical Power systems.

For shops dealing with VMware, the DS8880 includes interoperability with VMware vStorage APIs for Array Integration, VMware vCenter Site Recovery Manager, and a VMware vCenter plug-in that allows users to offload storage management operations in VMware environments to the DS8880. Should you prefer to go the other direction, the DS8880 supports IBM Storage Management Console for VMware vCenter to help VMware administrators independently monitor and control their storage resources from the VMware vSphere Client GUI.

If you didn’t notice, there have been a series of interesting announcements coming out of IBM Insight, which wrapped up yesterday in Las Vegas. DancingDinosaur intends to recap some of the most interesting announcements in case you missed them.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM z System Shines in 3Q15 Quarterly Report

October 23, 2015

IBM posted another down quarter this past Monday, maybe the thirteenth in a row; it’s easy to lose track. But yet again, the IBM z System provided a bright spot, a 15 percent increase compared with the year-ago period. Last quarter the z also came up a winner. Still the investment analysts went crazy, the stock tumbled, and wild scenarios, inspired by Dell’s acquisition of EMC no doubt, began circulating.

ibm-z13

IBM z13

However, don’t expect IBM to be going away anytime soon. DancingDinosaur is a technology analyst and writer, absolutely not a financial analyst (his wife handles the checkbook).  If you look at what has been going on in the past two years with z System and POWER from a technology standpoint these platforms are here for the long haul.  Most of the top 100 companies rely on a mainframe.  Linux on z has become a factor in roughly 70 percent of the leading shops. When DancingDinosaur last ran the numbers there still are about 5000-6000 active mainframe shops and the numbers aren’t dropping nearly as fast as some pundits would have you believe.

primary-linuxone-emperor

IBM LinuxONE

The z13 and LinuxONE are very powerful mainframes, the most powerful by any number of measures in the industry.  And they are a dramatically different breed of enterprise platform, capable of concurrently running mixed workloads—OLTP, mobile, cloud, analytics—with top performance, scalability, and rock solid security. The Open Mainframe Project in conjunction with the Linux Foundation means that IBM no longer is going it alone with the mainframe. A similar joint effort with the Open POWER Consortium began delivering results within a year.

The Dell-EMC comparison is not a valid one. EMC’s primary business was storage and the business at the enterprise level has changed dramatically. It has changed for IBM too; the company’s revenues from System Storage decreased 19 percent. But storage was never as important to the company as the z, which had long been its cash cow, now diminished for sure but still worth the investment. The dozens and dozens of acquisitions EMC made never brought it much in terms of synergy. IBM, at least, has its strategic imperatives plan that is making measurable progress.

IBM’s strategic imperatives, in fact, were the only business that was doing as well as the z. Strategic imperatives revenue: up 27 percent year-to-year; Cloud revenue up more than 65 percent year-to-date.  Total cloud revenue hit $9.4 billion over the trailing 12 months. Cloud delivered as a service had an annual run rate of $4.5 billion vs. $3.1 billion in third-quarter 2014.  Business analytics revenue was up 19 percent year-to-date. Be interesting to see what cognitive computing and Watson can produce.

Besides storage, the other dim spot in the IBM platform story is Power Systems.  Revenues from Power Systems were down 3 percent compared with the 2014 period. DancingDinosaur, long a fan of Power Systems, anticipates the platform will turn positive next quarter or the first quarter of 2016 as some of the new technology and products coming, in part, from the Open POWER Consortium begin to attract new customers and ring up sales. The new Power Systems LC Server family should attract interest for hybrid Cloud, Hyperscale Data Centers, and Open Solutions, hopefully bringing new customers. With online pricing starting around $6600 the LC machines should be quite competitive against x86 boxes of comparable capabilities.

DancingDinosaur is Alan Radding, a veteran information technology analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

 

IBM Power Systems LC Aims to Expand the Power Systems Market

October 8, 2015

IBM is rapidly trying to capitalize on its investment in POWER technology and the OpenPOWER Foundation to expand the POWER franchise. The company is offering up the  Power Systems LC Server family; LC for Linux Community. This addresses how processing will be used in the immediate future; specifically in Hybrid Cloud, Hyperscale Data Centers, and Open Solutions. You could probably throw in IoT and big data/real-time analytics too although those weren’t specifically mentioned in any of the LC announcement materials or briefings.

Linux Community 1 lc server

Courtesy of IBM:  the new Power S822LC (click to enlarge)

The LC Server family  comes with a new IBM go-to-market strategy, as IBM put it: buy servers the way you want to buy them; online with simple pricing and a one-click purchase (coming soon). Your choice of standard configurations or have your configuration customized to meet your unique needs through IBM’s global ecosystem of partners and providers. Same with a selection of service and support options from an array of IBM technology partners.

There appear to be three basic configurations at this point:

  1. Power Systems S812LC: designed for entry and small Hadoop workloads
  2. Power Systems S822LC for Commercial Computing: ideal for data in the cloud and flexible capacity for MSPs
  3. Power Systems S822LC for High Performance Computing: for cluster deployments across a broad range of industries

According to the latest S812LC spec sheet, the IBM 8348 Power System S812LC server with POWER8 processors is optimized for data and Linux. It is designed to deliver superior performance and throughput for high-value Linux workloads such as industry applications, open source, big data, and LAMP.  It incorporates OpenPOWER Foundation innovations for organizations that want the advantages of running their big data, Java, open source, and industry applications on a platform designed and optimized for data and Linux. Modular in design, the Power S812LC is simple to order and can scale from single racks to hundreds.

The Power S812LC server supports one processor socket, offering 8-core 3. 32 GHz or 10-core 2.92 GHz POWER8 configurations in a 19-inch rack-mount, 2U drawer configuration. All the cores are activated. The server provides 32 DIMM memory slots. Memory features supported are 4 GB (#EM5A), 8 GB (#EM5E), 16 GB (#EM5C), and 32 GB (#EM5D), allowing for a maximum system memory of 1024 GB.

The LC Server family will leverage a variety of innovations that have been brought out by various members of the OpenPOWER Foundation over the last few months.  These include innovations from Wistron, redislabs, Tyan, Nvidia, Mellanox, Ubuntu, and Nallatech in the areas of big data, GPU acceleration, HPC, and cloud. And, of course, IBM’s CAPI.

No actual pricing was provided. In response to a question from DancingDinosaur about whether the arrival of products from the OpenPOWER Foundation was driving down Power Systems prices, the response was a curt: “We haven’t seen the drag down,” said an IBM manager. Oh well, so much for an imminent price war over Power Systems.

However, IBM reported today that  based on its own internal testing, a new Power Systems LC server can complete an average of select Apache Spark workloads – including analyzing Twitter feeds, streaming web page views and other data-intensive analytics – for less than half the cost of an Intel E5-2699 V3 processor-based server, providing clients with 2.3x better performance per dollar spent. Additionally, the efficient design of a Power Systems LC server allows for 94% more Spark social media workloads in the same rack space as a comparable Intel-based server.

These new systems are exactly what is needed to make the POWER platform viable over the long term, and it can’t be just an IBM show. With OpenPOWER Foundation members delivering innovations there is no telling what can be done in terms of computing with POWER9 and POWER10 when they come.

DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM z System After Moore’s Law

October 2, 2015

The last z System that conformed to the expectations of Moore’s Law was the zEC12. IBM could boast that it had the fastest commercial processor available.  The subsequent z13 didn’t match it in processor speed.  The z13 chip runs a 22 nm core at 5 GHz, one-half a GHz slower than the zEC12, which ran its 32nm core at 5.5 GHz. Did you even notice?

third dimension chip

In 2007 an IBM scientist holds a 3-D integrated stacked chip

In 2015, the z13 delivers about a 10 percent performance bump per core thanks to the latest tweaks in the core design, such as better branch prediction and better pipelining. But even one-half a Ghz slower, the z13 was the first system to process 2.5 billion transactions a day.  Even more importantly for enterprise data centers, z13 transactions are persistent, protected, and auditable from end-to-end, adding assurance as mobile transactions grow to an estimated 40 trillion mobile transactions per day by 2025.

IBM clearly isn’t bemoaning the decline of Moore’s Law. In fact, it has been looking beyond silicon for the processing of the future.  This week it announced a major engineering breakthrough that could accelerate carbon nanotubes for the replacement of silicon transistors to power future computing. The breakthrough allows a new way to shrink transistor contacts without reducing the performance of carbon nanotube devices, essentially opening a path to dramatically faster, smaller, and more powerful computer chips beyond the capabilities of traditional semiconductors. Guess we can stop worrying about Moore’s Law.

Without Moore’s Law, IBM optimized just about everything on the z13 that could be optimized. It provides 320 separate channels dedicated to drive I/O throughput as well as such performance goodies as simultaneous multithreading (SMT), symmetric multiprocessing (SMP), and single instruction, multiple data (SIMD). Overall about 600 processors (in addition to your configurable cores) speed and streamline processes throughout the machine. Moore’s Law, in effect, has been bypassed. As much as the industry enjoyed the annual doubling of capacity and corresponding lower price/performance it doesn’t need Moore’s Law to meet today’s insatiable demand for processing power.

The company will be doing similar things with the POWER processor. Today we have the POWER8. Coming is the POWER9 followed by the POWER10. The POWER9 reportedly will arrive in 2017 at 14nm, feature a new micro-architecture, and be optimized with CAPI and NVLINK. POWER10, reportedly, arrives around 2020 optimized for extreme analytics.

As IBM explains its latest breakthrough, carbon nanotubes represent a new class of semiconductor materials that consist of single atomic sheets of carbon rolled up into a tube. The carbon nanotubes form the core of a transistor device whose superior electrical properties promise several generations of technology scaling beyond the physical limits of silicon.

The new processor technology, IBM reports, overcomes a major hurdle that silicon and any other semiconductor transistor technologies face when scaling down. In the transistor, two things scale: the channel and its two contacts. As devices become smaller, the increased contact resistance of carbon nanotubes hindered performance gains. The latest development could overcome contact resistance all the way to the 1.8 nanometer node – four technology generations away.

Carbon nanotube chips could greatly improve the capabilities of high performance computers, enabling, for example, big data to be analyzed faster, increasing the power and battery life of mobile devices, and allowing cloud data centers to deliver services more efficiently and economically. Even cognitive computing and Internet of Things can benefit.

Until now, vendors have be able to shrink the silicon transistors, but they are approaching a point of physical limitation, which is why Moore’s Law is running out of steam. Previously, IBM demonstrated that carbon nanotube transistors can operate as effective switches at channel dimensions of less than ten nanometers. IBM’s new contact approach overcomes the contact resistance by incorporating carbon nanotubes into semiconductor devices, which could result in smaller chips with greater performance and lower power consumption.

As transistors shrink in size, electrical resistance within the contacts increases, which limits performance. To overcome this resistance, IBM researchers gave up traditional contact schemes and created a metallurgical process akin to microscopic welding that chemically binds the metal atoms to the carbon atoms at the ends of nanotubes. This end-bonded contact scheme allows the contacts to be shrunken below 10 nanometers without impacting performance. This brings the industry a step closer to the goal of a carbon nanotube technology within the decade, says IBM.

Let’s hope this works as expected. If not, IBM has other possibilities already in its research labs. DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.

IBM Ranked #1 in Midrange Servers and Enterprise Network Storage

August 13, 2015

Although the financial markets may be beating up IBM the technology world continues to acclaim IBM technology and products. Most recently, IBM ranked on top in the CRN Annual Report Card (ARC) Survey recognizing the best-in-class vendors in the categories of partnership, support, and product innovation.  But the accolades don’t stop there.

Mobile Security Infographic

Courtesy of IBM (click to enlarge)

IBM was named a leader in four key cloud services categories—hosting, overall cloud professional services, cloud consulting services, and systems integration—by the independent technology market research firm Technology Business Research, Inc. (TBR).  This summer Gartner also named IBM as a leader in Security Information and Event Management (SIEM) in the latest Gartner Magic Quadrant for SIEM, this for the seventh consecutive year. Gartner also named IBM as a Leader in the 2015 Magic Quadrant for Mobile Application Development Platforms, specifically calling out the IBM MobileFirst Platform.

The CRN award addresses the technology channel. According to IBM, the company and its business partners are engaging with clients in new ways to work, building the infrastructure, and deploying innovative solutions for the digital era.  This should come as no surprise to anyone reading this blog; the z 13 was designed expressly to be a digital platform for the cloud, mobile, and big data era.  IBM’s z and Power Systems servers and Storage Solutions specifically were designed to address the challenges these areas present.

Along the same lines, IBM’s commitment to open alliances has continued this year unabated, starting with its focus on innovation platforms designed for big data and superior cloud economics, which continue to be the cornerstone of IBM Power System. The company also plays a leading role in the Open Power Foundation, the Linux Foundation as well as ramping up communities around the Internet of Things, developerWorks Recipes, and the open cloud, developerWorks Open. The last two were topics DancingDinosaur tackled recently, here and here.

The TBR report, entitled Hosted Private & Professional Services Cloud Benchmark, provides a market synopsis and growth estimates for 29 cloud providers in the first quarter of 2015. In that report, TBR cited IBM as:

  • The undisputed growth leader in overall professional cloud services
  • The leader in hosted private cloud and managed cloud services
  • A leader in OpenStack vendor acquisitions and OpenStack cloud initiatives
  • A growth leader in cloud consulting services, bridging the gap between technology and strategy consulting
  • A growth leader in cloud systems integration services

According to the report: IBM’s leading position across all categories remains unchallenged as the company’s established SoftLayer and Bluemix portfolios, coupled with in-house cloud and solutions integration expertise, provide enterprises with end-to-end solutions.

Wall Street analysts and pundits clearly look at IBM differently than IT analysts.  The folks who look at IBM’s technology, strategy, and services, like those at Gartner, TBR, and the CRN report card, tell a different story. Who do you think has it right?

DancingDinosaur is Alan Radding, a veteran IT analyst and writer. Please follow DancingDinosaur on Twitter, @mainframeblog. See more of his IT writing at technologywriter.com and here.


Follow

Get every new post delivered to your Inbox.

Join 836 other followers

%d bloggers like this: